
 

 

ABSTRACT 
A method of reducing the perceived latency of touch input 
by employing a model to predict touch events before the 
finger reaches the touch surface is proposed. A corpus of 3D 
finger movement data was collected, and used to develop a 
model capable of three granularities at different phases of 
movement: initial direction, final touch location, time of 
touchdown. The model is validated for target distances >= 
25.5cm, and demonstrated to have a mean accuracy of 
1.05cm 128ms before the user touches the screen. A user 
study of different levels of latency reveals a strong 
preference for unperceivable latency touchdown feedback. A 
form of ‘soft’ feedback is proposed, as well as other 
performance-enhancing uses for this prediction model.  

INTRODUCTION 
The time delay between user input and corresponding 
graphical feedback, here classified as interaction latency, 
has long been studied in computer science. Early latency 
research indicated that the visual “response to input should 
be immediate and perceived as part of the mechanical 
action induced by the operator. Time delay: No more than 
0.1 second (100ms)” [25]. More recent work has found that 
this threshold is, in fact, too high, as humans are able to 
perceive even lower levels of latency - for direct touch 
systems, it has been measured as low as 24ms when tapping 
the screen [20], and 6ms when dragging [27]. Furthermore, 
input latencies well below 100ms have been shown to 
impair a user’s ability to perform basic tasks [20, 27].  

While the touchdown latency of current commercial touch 
devices can be as low as 75ms, this latency is still 
perceptible to users. Eliminating latency, or at least 
reducing it beyond the limits of human perception and 
performance impairment, is highly desirable. Both Leigh et 
al. and Ng et al. demonstrated direct-touch systems capable 
of less than 1ms of latency [22, 27]. While compelling, these 
are not commercially viable for most applications: an FPGA 

replaced a general-purpose processor and software, they 
employ a high-speed projector rather than a display panel, 
and each is capable of displaying only simple geometry. 

While completely eliminating latency from traditional form 
factors may ultimately prove to be impossible, we believe 
that it is possible to reduce the apparent latency of an 
interactive system. We define apparent latency as the time 
between an input and the system’s soft feedback to that 
input, which serves only to show a quick response to the 
user (e.g.: pointer movement, UI buttons being depressed), 
as distinct from the time required to show the hard feedback 
of an application actually responding to that same input.  

This paper investigates methods for eliminating the 
apparent latency of tapping actions on a large touchscreen 
through the development and use of a model of finger 
movement. We track the path of a user’s finger as it 
approaches the display and predict the location and time of 
its landing. We then signal the application of the impending 
touch so that it can pre-buffer its response to the touchdown 
event. In our demonstration system, we trigger a visual 
response to the touch at the predicted point before the finger 
lands on the screen. The timing of the trigger is tuned to the 
system’s processing and display latency, so the feedback is 
shown to the user at the moment they touch the display. The 
result is an improvement in the apparent latency as touch 
and feedback occur simultaneously. 

In order to predict the user’s landing point, we must first 
understand the 3D spatial dynamics of how users perform 
touch actions. To this end, we augmented a Samsung 
SUR40 tabletop with a high fidelity 3D tracking system to 
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Figure 1: The model predicts the location and time of a touch. 
Parameters of the model are tuned to the latency of the device 

to maximize accuracy while guaranteeing performance. 
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record the paths of user finger movements through space as 
they performed basic touchscreen tasks. We collected data 
on input paths by asking 15 participants to perform repeated 
tapping tasks. We then analyzed this data using various 
numerical and qualitative observations to develop a 
prediction model of 3D finger motion for touch-table device 
interaction. This model, which was validated by a 
subsequent study for targets at least 25.5cm distant, enables 
us to predict the movement direction, touch location, and 
touch time prior to finger-device contact. Using our model, 
we can achieve a touch-point prediction accuracy of 1.05cm 
on average 128ms before the user touches the display. This 
accuracy and prediction time horizon is sufficient to reduce 
the time between the finger touch down and the system’s 
apparent response to beneath the 24ms lower bound of 
human perception, described by Jota et al [20]. 

In this paper, we first describe relevant prior art in the areas of 
hover sensing, input latency, and touch prediction. We then 
describe a pair of studies that we used to formulate and then 
validate our predictive model. Next, we describe a third study 
in which participants’ preferences for low-latency touch input 
were investigated. Finally, we describe a number of uses for 
our model beyond simple feedback and outline future work 
that continues the exploration of touch prediction. 

RELATED WORK 
We draw from several areas of related work in our present 
research: the detection and use of hovering information in HCI, 
the psychophysics of latency, the use of predictive models in 
HCI, and the modeling of human motion in three dimensions.  

Hover Sensing 
A number of sensing techniques have been employed to 
detect the position of the user prior to touching a display. In 
HCI research, hover sensing is often simulated using optical 
tracking tools such as the Vicon motion capture system, as 
we have done in this work. The user is required to wear or 
hold objects augmented with markers, as well as the need to 
deploy stationary cameras. A more practical approach for 
commercial products, markerless hover sensing has been 
demonstrated using optical techniques, including through 
the use of an array of time-of-flight based range finders [3] 
as well as stereo and optical cameras [35].  

Non-optical tracking has also been demonstrated using a 
number of technologies. One example is the use of 
acoustic-based sensors, such as the “Flock of Birds” 
tracking employed by Fitzmaurice et al. [8], which enables 
six degrees of freedom (DOF) position and orientation 
sensing of physical handheld objects. Although popular in 
research applications, widespread application of this sensor 
has been elusive. More common are 5-DOF tools using 
electro-magnetic resonance (EMR). EMR is commonly 
used to track the position and orientation of styli in relation 
to a digitizer, and employed in creating pen-based user 
input. Although typically limited to a small range beyond 
the digitizer in commercial applications, tracking with EMR 
has been used in much larger volumes [12]. 

Most touch sensors employed today are based on projective 
capacitance. Fundamentally, the technique is capable of 
sensing the user’s presence centimeters away from the 
digitizer, as is done with the Theremin [31]. Such sensors 
employed today are augmented with a ground plane, 
purposefully added to eliminate their ability to detect a 
user’s finger prior to touch [6]. More recently, sensors have 
been further augmented to include the ability to not only 
detect the user’s finger above the device, but also to detect 
its distance from the digitizer [2, 14, 18, 34]. 

Use of Hover 
Prior work has explored the use of sensing hover to enable 
intentional user input. Our work, in contrast, effectively 
hides the system’s ability to detect hover from the user, 
using it only for prediction of touch location and timing, 
and elimination of apparent latency.  

Hover has long been the domain of pen-operated devices [9, 
19]. Subramanian et al. suggest that the 3D position of a 
pointing device affects the interaction on the surface [30]. 
The authors propose a multi-layer application, with an active 
usage of the space above the display, where users 
purposefully distance the pen from the display to activate 
actions. Grossman et al. present a technique that utilizes the 
hover state of pen-based systems to navigate through a 
hover-only command layer [15]. Spindler et al. [28] propose 
that the space above the surface be divided into stacked 
layers, with layer specific interactions  – this is echoed by 
Grossman et al. [16], who divided the space around a 
volumetric display into two spherical ‘layers’ with subtly 
differentiated interaction. This is distinct from Wigdor et al., 
who argued for the use of the hover area as a ‘preview’ 
space for touch gestures [33], similar to Yang et al. who 
used hover sensing to zoom on-screen targets [37]. In 
contrast, Marquadt et al. recommend that the space above 
the touch surface and the touch surface be considered one 
continuous space, and not separate interaction spaces [24].  

These projects focused on differentiating the space around 
the display, and using it as an explicit interaction volume. 
Our approach is more similar to that taken by Hachisu and 
Kajimoto [17], who demonstrate the use of a pair of photo-
sensing layers to measure finger velocity and predict the 
time of contact with the touch surface. We build on this 
work through the addition of a model of motion that allows 
the prediction of not only time, but also early indication of 
direction, as well as later prediction of the location of the 
user’s touch, enabling low-latency visual feedback in 
addition to the audio feedback they provide. 

Latency  
Ng et al. studied the user perception of latency for touch 
input. For dragging actions with a direct touch device, users 
were able to detect latency levels as low as 6ms [27]. Jota et 
al. studied the user performance of latency for touch input 
and found that dragging task performance is affected if 
latency levels are above 25ms [20]. In the present work, we 
focus on eliminating latency of the touchdown moment 
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when the user first touches the screen. Jota et al. found that 
users are unable to perceive latency of responses to tapping 
that occur in less than 24ms [20] – we use prediction of 
touch location to provide soft touchdown feedback within 
this critical time, effectively eliminating perceptible latency. 

Predicting Input 
Predicting users’ actions has been an active area of research 
in the field of HCI. Mackenzie proposes the application of 
Fitts's Law to predict movement time for standard touch 
interfaces [23]. By building a Fitts's model for a particular 
device, the movement time can be predicted given a known 
target and cursor position. Wobbrock et al. complements 
this approach with a model to predict pointing accuracy 
[36]. Instead of predicting movement time, a given 
movement time is used to predict error. In many pointing 
experiments, the input device is manipulated by in-air 
gestures, including Fitts’s original stylus-based apparatus 
[7]. Murata proposes a method for predicting the intended 
target based on the current mouse cursor trajectory [26].  
The author reports movement time reductions when using 
the predictive algorithm, but notes limited returns for dense 
target regions. Baudisch et al. adopted this approach: 
instead of jumping the cursor close to the target, this 
technique wraps eligible targets around the cursor [4].   

We sought to build on these projects by developing a model 
of hand motion while performing touch-input tapping tasks, 
and apply this model to reducing apparent latency. 

Models of Hand Motion 
Biomechanists [32] and neuroscientists [10, 13] are actively 
engaged in the capture and analysis of 3D human hand 
motion. Their interest lies primarily in the understanding of 
various kinematic features, such as muscle actuation and 
joint torques, as well as cognitive planning during the hand 
movement. Flash [10] modeled the unconstrained point-to-
point arm movement by defining an objective function and 
running an optimization algorithm. They found that the 
minimization of hand jerk movements generates an 
acceptable trajectory. Following the same approach, Uno 
[32] optimizes for another kinematic feature, torque, to 
generate the hand trajectory. While informative, these 
models are unsuitable to our goal of reducing latency, as 
they are computationally intensive and cannot be computed 
in real-time (for our purposes, as in little as 30ms).  

We propose a generic model focusing on the prediction of 
landing location and touch time based on the pre-touch 
movement to reduce the time between the finger landing on 
the screen and the system’s apparent response.  

Having examined this related work, we turned our attention 
to the development of our predictive model of hand motion 
when performing pointing tasks on a touchscreen display. 
To that end, we first performed a data collection 
experiment. The data from this experiment was then used to 
develop our model. 

DATA COLLECTION 
To form our predictive model of tap time and location, we 
began by collecting data of tap actions on a touchscreen 
display. Participants performed tap gestures with varying 
target distance and direction of gesture. The data were then 
used to build our model, which we subsequently validated 
with a study we will later describe. 

Participants 
We recruited 15 right-handed participants (6 female) 
aged 22-30 from the local community. Participants 
reported owning 2 (mean) touch devices and spend 2-4 
hours a day using them. Participants were paid $20 for a 
half-hour session. 

Apparatus 
The study was implemented using two different sensors: to 
sense touch, a Microsoft Surface table 2.0 was used  
(Samsung SUR40 with PixelSense). Pre-touch data was 
captured using a Vicon tracking system. Participants wore a 
motion capture marker-instrumented ring on their index 
fingertip, which was tracked in 3D at 120Hz. 

The flow of the experiment was controlled by a separate 
PC, which received sensing information from both the 
Surface touch system and the Vicon tracking system, while 
triggering visual feedback on the Surface display. The 
experiment was implemented in python and shown to the 
user on the Surface table. It was designed to (1) present 
instructions and apparatus to the participant, (2) record the 
position and rotation of the tracked finger, (3) receive 
current touch events from the Surface, (4) issue commands 
to the display, and (5) log all of the data.  

Task 
Participants performed a series of target selection tasks, 
modeled after traditional pointing experiments, with some 
modifications made to ensure they knew their target before 
beginning the gesture, thus avoiding contamination of 
collected data with corrective movements. Target location 
was randomized, rather than performed in sequential-
circle. Further, to begin each trial, participants were 
required to touch and hold a visible starting point 
(r=2.3cm), immediately after the target location was 
shown. They were required to hold the starting point until 
an audio cue was played (randomly between 0.7 and 1.0 
seconds after touch). If the participant anticipated the 
beginning of the trial and moved their finger early, the trial 
would be marked as an error.  

Immediately after the participants touched the starting point, 
at the opposite side of the circular arrangement a target point 
would appear for participants to tap. The target size of 
2.3cm was selected as a trade-off between our need to 
specify end-position while minimizing corrective 
movements. Once a successful trial was completed, 
participants were instructed to return to another starting 
point for the next trial. Erroneous tasks were indicated with 
feedback on the Surface display and repeated. 
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Procedure 
Participants were asked to complete a consent form and a 
questionnaire to collect demographic information. They 
then received instruction on how to interact with the 
apparatus and successfully completed 30 training trials. 
After the execution of each trial, a text block at the top right 
corner of the screen would update the cumulative error rate 
(shown as %). Participants were instructed to slow down if 
the error rate was above 5%, but were not given any 
instructions regarding their pre-touch movement.  
Design 
Tasks were designed according to two independent 
variables: target direction (8 cardinal directions) and target 
distance (20.8cm and 30.1cm). The combination of these 
two variables produces 16 unique gestures. There were four 
repetitions for each combination of direction and distance. 
Therefore, a session included a total of 64 actions. The 
ordering of the trials was randomized within each session. 
Participants completed 3 sessions and were given a 5-
minute break between sessions.  
In summary, 15 participants performed 192 trials each, for a 
total of 2880 trials. 
Measures and Analysis Methodology 
For each successful trial we captured the total completion 
time; finger position, rotation, and timestamp for every 
point in the finger trajectory; as well as the time participants 
touched the screen. Tracking data was analyzed for 
significant tracking errors, with less than 0.3% of the trials 
removed due to excessive noise in tracking data. Based on 
the frequency of the tracking system (120Hz) and the speed 
of the gestures, any tracking event that was more than 
3.5cm away from its previous neighbor was considered an 
outlier and filtered (0.6%). The raw data (including outliers) 
for a particular target location are shown in Figure 2.  
After removing 8 trials due to tracking noise, we had 2872 
trials available for the development of our predictive model.  
 

ANALYSIS & PREDICTING TOUCH  
Having collected these tapping gestures, we turned our 
attention to modeling the trajectories with the primary goal 
of predicting the time and location of the final finger touch. 
Here we describe our approach, beginning with a discussion 
of the attributes of the touch trajectories, followed by the 
model we derived to describe them. 

Note that our three-dimensional coordinate system is right-
handed: x and y representing the Surface screen; the origin 
at the bottom-left corner of the Surface display; and z, the 
normal to the display.  

Numerical and Qualitative Observations 
Time & Goals: participants completed each trial with an 
mean movement time of 416ms (std.: 121ms). Our system 
had an average end-to-end latency of 80ms: 70ms from the 
Vicon system, 8ms from the display, and 2ms of 
processing. Thus, to drop touch-down latency below the 
24ms threshold, our goal was to remove at least ~56ms via 
prediction. Applying our work to other systems will require 
additional tuning. 

Movement phases: Figure 3 shows that all the trajectories 
have one peak, with a constant climb before, and a constant 
decline after. However, we did not find the peak to be at the 
same place in-between trajectories. Instead the majority of 
trajectories are asymmetrical, 2.2% have a peak before 30% 
of the total path, 47.9% have a peak between 30-50% of the 
total path, 47.1% have a peak between 50-70% of the total 
path, and 2.8% have a peak after 80% of the trajectory 
completed path.  

We have found it useful to divide the movement into three 
phases: lift-off, which is characterized by a positive change in 
height, continuation, which begins as the user’s finger starts to 
dip vertically, and drop-down, the final plunge towards the 
screen. Each of the lift-off and drop-down phases has interesting 
characteristics, which we will examine. 

 
Figure 2: Overlay of all the pre-touch approaches to a 

northwest target. The blue rectangle represents the 
interactive surface used in the study. 

 
Figure 3: Side view overlay of all trials, normalized to start 

and end positions. 
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Lift-off direction: As might be expected, the direction of 
movement of the user’s hand above the plane of the 
screen is roughly co-linear to the target direction, as 
shown in Figure 4. Fitting a straight line to this 
movement, the angle of that line to a straight line from 
starting point to the target is, on average, 4.78°, with a 
standard deviation of 4.51°. Depending on the desired 
degree of certainty, this information alone is sufficient to 
eliminate several potential touch targets.  

Drop-down direction: Figure 5 and Figure 7 show the 
trajectory of final approach towards the screen. As can be 
seen, the direction of movement in the drop-down phase 
roughly fits a vertical drop to the screen.  We also note that, 
as can be seen in Figure 7, the final approach when viewed 
from the side is roughly parabolic. It is clear when 
examining Figure 7 that a curve, constrained to intersect on 
a normal to the plane, will provide a rough fit. We 
examined several options, shown in Figure 6, and found 
that a parabola, constrained to intersect the screen at a 
normal, and fit to the hover path, would provide the best fit. 

Predictive Touch Model 
Based on these observations, we present a prediction 
model, which makes three different predictions at three 
different stages in the user’s gesture. They are initial 
direction, final touch location, and final touch time. 
Making predictions at three different moments allows our 
model to provide progressively more accurate information, 
allowing the UI to react as early as possible. 

Prediction 1: Direction of Movement 
Lift-off begins with a user lifting a finger off the touch 
surface and ends at the highest point of the trajectory 
(peak). As we discussed, above, this often ends before the 
user has reached the halfway point towards their desired 
target. As is also described, the direction of movement 
along the plane of the screen can be used to coarsely 
predict a line along which their intended target is likely to 
fall. At this early stage, our model provides this line, 
allowing elimination of targets outside of its bounds.  

 
Figure 5: Final finger approach, as seen from the approaching 

direction 

 

 
Figure 7: Final finger approach, as seem from the side of the 

approaching direction  

 
Figure 6: Trajectory prediction for line, parabola, circle and 

vertical fits. Future points of the actual trajectory (black dots) 
fit a parabola best. 

 

 
Figure 4: Trajectory for the eight directions of movement, 

normalized to start at the same location (center). The blue lines 
represent the straight-line approach to each target. 
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Prediction 2: Final Touch Location 
A prediction of the final location of the touch, represented 
as an x/y point, is computed by fitting a parabola to the 
approach trajectory. This parabola (Figure 8) is constrained 
as follows: (1) the plane is fit to the (nearly planar) drop-
down trajectory of the touch;  (2) the position of the finger 
at the time of the fit is on the parabola; (3) the angle of 
movement at the time of the fit is made a tangent to the 
parabola; (4) the angle of intersection with the display is 
orthogonal. Once the parabola is fit to the data, and 
constrained by these parameters, its intersection with the 
display comprises the predicted touch point. The fit is made 
when the drop-down phase begins. This is characterized by 
two conditions: (1) the finger’s proximity to the screen; and 
(2) the angle to xy plane is higher than a threshold.  
For each new point i, when the conditions are satisfied, the 
tapping location is predicted. To calculate the tapping 
location, we first fit a vertical plane to the trajectory.   
Given the angle d and (𝑥!, 𝑧!), we predict the landing 
point, (𝑥!, 𝑧!), by fitting a parabola: 

  𝑥   = 𝑎𝑧!   + 𝑏𝑧   + 𝑐 

Based on the derivatives at (𝑥!, 𝑧!) and (𝑥!, 𝑧!): 

 𝑥!!   =   
!!

!"#(!)
     𝑥!!   =   0 

we calculate a, b, and c  as follows: 

𝑎   =   
𝑥!!   −   𝑥!!

2 𝑧!  –   𝑧!
        𝑏   =   𝑥!!   −   2𝑎𝑧!     

  𝑐   =   𝑥!  –   𝑎𝑧!!  –   𝑏𝑧! 
The landing point in this plane is defined as: 

𝑥!, 𝑧! = (𝑐, 0) 

Converting 𝑥!, 𝑧!  back to the original 3D Vicon tracking 
coordinate system yields the landing position. 

The timing of this phase is tuned based on the overall 
latency of the system, including that of the hover sensor: 
the later the prediction is made, the more accurate it will be, 
but the less time will be available for the system to respond. 
The goal is to tune the system so that the prediction arrives 
at the application so that it can respond immediately, and 
have its response shown on the screen at the precise 
moment the user touches. Through iterative testing, we 
found that, for the latency of our system (display + Vicon, 
approximately 80ms) setting thresholds of 4cm (distance to 
display) and 23o (angle to plane) yielded the best results. 
Given these unusually high latencies values, a more typical 
system would see even better results. 
With these thresholds, our model predicts a touchdown 
location with an average error (distance to actual touch point) 
of 1.18cm and standard deviation of 1.09cm, on average, 91 
milliseconds (std.: 72ms) before touchdown and at an 
average distance of 3.22cm (std.: 1.30cm) above the display. 
For the same set of trials, the errors for other curves (see 
Figure 6): circular fit (avg.: 1.72cm, std.: 1.62cm), vertical 
drop (avg.: 2.43cm, std.: 2.04cm) and a linear fit (avg.: 
9.3cm, std.: 4.83cm) are larger than the parabolic fit. 
The visual results and statistics indicate that pre-touch data 
has the potential to predict touch location long before the 
user touches the display. We validate the parabolic 
prediction model in a secondary study by using it to predict 
touch location in real time. 
Prediction 3: Final Touch Time  
Given that the timing of the prediction of final touch 
location is tuned to the latency of the system on which it is 
running, the time that it is delivered ahead of the actual 
touch is reliable. The goal of this final step is to provide a 
highly-accurate prediction of the time the user will touch, 
which necessitates waiting until the final approach to the 
display. We observed that the final ‘drop’ action, beyond 
the final 1.8cm of a touch gesture, experiences almost no 
deceleration. Thus, when the finger reaches 1.8cm from the 
display, a simple linear extrapolation is applied assuming a 
constant velocity.  
We are able to predict within 2.0ms (mean; std.: 19.5ms), 
51ms (mean; std.: 42ms) before touchdown. Note that, due 
to the 80ms latency of our Vicon sensor, this prediction is 
typically generated after the user has actually touched. We 
include it here for use with systems not based on computer 
vision and subject to network latency. 

MODEL EVALUATION 
Having developed our model using the collected data, we 
sought to validate the model outside the condition of the 
first study. We recruited 15 new right-handed participants 
from the local community (7 female) that had not 
participated in the first study with ages ranging from 20 to 
30. On average, our participants own two touch devices 
and spend two to four hours a day using them.  
Participants were paid $10 for a half-hour session. 

 
Figure 8: The parabola is fitted in the drop-down plane with 

(1) an initial point, (2) the angle of movement, (3) and the 
intersection is orthogonal with the display 
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From the first study we observed that arm joint movement 
skews the trajectory. The longer the distance, the more 
skewed the trajectory becomes. Secondly, people 
dynamically correct the trajectory. The smaller the target, 
the more corrections were observed. To further study these 
effects, we included target distance and size as independent 
variables. Therefore, our validation study was designed 
according to three different independent variables: target 
direction (8 cardinal directions), target distance (25.5cm, 
32.4cm, and 39.4cm), and target size (1.6cm, 2.1cm, and 
2.6cm). The combination of these three variables produces 
72 unique tasks. The order of target size and distance was 
randomized, with target direction always starting with the 
south position, and going clockwise for each combination 
of target size and distance. Participants completed 3 
sessions and were given a break after each session. 

The procedure and apparatus were identical to the first 
study, with the exception of the prediction model running in 
the background in real time. The prediction model did not 
provide any feedback to the participants. For each trial we 
captured the trajectories and logged the prediction results.  

Results 
Prediction 1: On average, the final touch point was within 
4.25° of the straight-line prediction provided by our model 
(std.: 4.61°). On average, this was made available 186ms 
(mean; std.: 77ms) before the user touched the display. We 
found no significant effect for target size, direction, or 
distance on prediction accuracy. 

Prediction 2: On average, our model predicted a touch 
location with an accuracy of 1.05cm (std.: 0.81cm). The 
finger was, on average, 2.87cm (std.: 1.37cm) away from 
the display when the prediction was made. The model is 
able to predict, on average, 128ms (std.: 63ms) before 
touching the display, allowing us to significantly reduce 
latency. We found no significant effect for target size, 
direction, or distance on prediction accuracy. 

Prediction 3: On average, our model predicted the time of 
the touch within 1.6ms (std.: 20.7ms). This prediction was 
made, on average, 49ms before the touch was made (std.: 
38ms). We found no significant effect for target size, 
direction, or distance on prediction accuracy. 

These results indicate that our prediction model can be 
generalized to different target distances, sizes, and 
directions, with an average drift from the touchdown 
location of 1.05cm, 128ms prior to the finger touching the 
device. To provide context, given that our mean trial 
completion time for the experiment was approximately 
447ms, this means that we were able to predict the 
location of the final touch before 29% of the approach 
action was completed. 

PREFERRED LATENCY LEVEL 
Armed with our prediction model, we are able to provide 
tapping feedback with a latency range from -100ms to 
100ms. From previous work, we know that latencies below 
24ms are unperceivable by humans [20], however we have 

no understanding if unperceivable latency UI is, indeed, 
preferred by users. Using our predictive model, we 
generated widgets with different levels of latency and 
evaluated what amount of latency participants prefer. We 
were particularly curious about participants’ responses to 
negative latency – that is, having a UI element respond 
before they finish reaching for it.  

Participants 
We recruited 16 right-handed participants from the local 
community (8 male, 8 female) with ages ranging from 20 to 
31. On average, our participants own two touch devices and 
spend three to four hours a day using them. We paid 
participants $10 for a half-hour session. 

Task 
The participants were shown a screen with two buttons, 
each with different response latency. Before tapping 
each button once, they were asked to touch and hold a 
visible starting point until audio feedback, which would 
occur randomly between 0.7 and 1.0 seconds later, was 
given. They then were asked to indicate which button 
they preferred.  

Design 
Tasks were designed with one independent variable, 
response latency. To limit combinatorial explosion, we 
decided to provide widget feedback under five different 
conditions: immediately as a finger prediction is made (0ms 
after prediction) and then artificially added latencies of 40, 
80, 120, and 160ms to the predicted time, resulting in 10 
unique pairs of latency. To remove the possible preference 
for buttons placed to the left or right, we also flipped the 
order of the buttons, resulting in 20 total pairs. The ordering 
of the 20 pairs was randomized within each session.  
Latency level was also randomly generated. Participants 
completed 7 sessions of 20 pairs and were given a 1-minute 
break between sessions, for a total of 2240 total trials.  

Methodology 
To calculate the effective latency we first calculate the 
response time and the touch time. The response time is 
calculated by artificially adding to the time of prediction 
some latency (between 0 and 160ms). For touch time, we 
consider when the Surface detected the touch and subtract a 
known Surface latency of 137ms, measured using the 
methodology described in [27]. The effective latency is the 
difference between the response time and the touch time.  

Results 
After pressing both buttons in one trial, participants 
indicated which button they preferred. Each trial resulted in 
2 points (not shown) in Figure 9; one at (L1, 1) for the 
preferred latency L1, and one at (L2, 0) for the other 
latency L2.  For each participant, a curve is fit to 280 data 
points. Three possible curves emerged, increasing, 
decreasing, and peaked. During debriefing, we questioned 
participants regarding how they select the preferred latency, 
and identified three strategies (Faster is Always Better, On 
Touch, Visible Latency), aligned with the curve of each 
participant. Three corresponding curves in Figure 9 were 
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generated from the participants in each of these three 
groups. The dotted line is a curve fit to all data points, 
indicating that overall participants preferred latencies 
around 40ms. 

Faster is Always Better. Four participants that preferred 
negative latency were aware that the system was providing 
feedback before the actual touch, but are confident that the 
prediction is always accurate and therefore, the system 
should respond as soon as a prediction is possible.  

On Touch. Eight participants preferred a system where 
effective latency is between 0ms and 40ms. Participants 
commented that they liked that the system reacted exactly 
when their finger touched, but not before. When asked why 
they did not prefer negative latency, participants mentioned 
loss of control and lack of trust regarding the predictive 
accuracy of the system as reasons for this preference.  

Visible Latency. Four participants preferred visible latency. 
When asked about the feeling of immediate response, they 
expressed that they were not yet confident regarding the 
predictive model and felt that an immediate response wasn’t 
indicative of a successful recognition. Visible latency gave 
them a feeling of being in control of the system and, 
therefore, they preferred it to immediate response. This was 
true even for trials where prediction was employed. 

Our results show that there is a strong preference for 
latencies that are only achievable through the use of 
prediction. Overall, our participants indicated that they 
preferred the lower-latency button in 62% of the study’s 
trials. We ran a Wilcoxon Signed-Rank test comparing the 
percent of trials where the lower latency was preferred to 
the percent of trials where the higher latency was 
preferred, and found a significant difference between the 
two percentages (Z = 2.78 p = 0.003). 12 out of 16 
participants preferred effective latencies below 40ms, 
which was concluded to be unperceivable for 85% of the 
participants [20]. 

NEW OPPORTUNITIES AND CONSIDERATIONS 
In this section, we detail a number of new interaction 
opportunities that our prediction model provides and 
discuss some of the considerations that system designers 
must address when employing these techniques. 

Reducing Apparent Latency  
Our motivating use case is the reduction of visual latency in 
order to provide the user with a more reactive touch-input 
experience. Based on our validation study, our model can 
predict touch location accurately enough at a sufficient time 
horizon to support simultaneous touch and visual response. 
A prediction 128ms prior to the finger touching the device 
is sufficient to pre-buffer and display the visual response to 
the input action. We believe that this work validates the 
assertion that computer systems can be made to provide 
immediate, real-world-like responses to touch input.  

Beyond accelerating traditional visual feedback, our 
approach enables a new model of feedback based on 
predicted and actual input. With the prediction data from 
this model, soft feedback can be designed to provide an 
immediate response to tapping, eliminating the perception 
of latency. After the touch sensor captures the touch event, 
a transition from the previous soft feedback to the next 
user interface (UI) state can be designed to provide a 
responsive and fluent experience, instead of showing the 
corresponding UI state directly. 

Reducing Programmatic Latency 
Beyond changes to the visual appearance of GUI elements, 
touch-controlled applications execute arbitrary application 
logic in response to input. A 128-200ms prediction horizon 
provides system designers with the intriguing possibility of 
kicking-off time consuming programmatic responses to 
input before the input occurs. 

As an example, consider the widely adopted practice of pre-
caching web content based on the hyperlinks present in the 
page being currently viewed. Pre-caching has been shown 
to significantly reduce page-loading times. However, it 
comes at the expense of increasing both bandwidth usage 
and the loads on the web servers themselves, as content is 
often cached but not always consumed. Additionally, with 
the potential for many referenced URLs on any one page, it 
is not always clear to algorithm designers which links to 
pre-fetch, meaning that clicked-on links may not have 
already been cached. 

 
Figure 10: Transitions between 3 states of touch  

input that model the starting and stopping of actions, based on 
prediction input. 

 

 
Figure 9: Preference curve for each observed trend and 

average latency preference for all participants. 
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A web-browser coupled with our input prediction model 
would gain a 128-200ms head-start on loading linked 
pages. Recent analysis has suggested that the median web-
page loading time for desktop systems is 2.45s [1]. As such, 
a head-start could represent a 5-8% improvement in page 
loading time, without increasing bandwidth usage or server 
burden. Similar examples include the loading of launched 
applications and the caching of the contents of a directory. 

To fully take advantage of predicted input, we propose a 
modification to the traditional 3-state model of graphical 
input, proposed by Buxton [5], that allows for 
programmatic responses to be started and aborted as 
appropriate as the input system updates its understanding of 
the user’s intent. Figure 10 shows this model: in State 1, 
related actions can be issued by the input system as 
predictions (direction, location, and time) of a possible 
action are received.  When no actual input is being 
performed (e.g. the user retracts hand), the input system 
will stop all actions. When the actual touch target turns out 
not to be the predicted one, the system may also stop all 
actions but this will not add extra latency compared to the 
traditional 3-state model.  On the other hand, if the touch 
sensor confirms the predicted action, the latency of the 
touch sensor, network, rendering, and all the procedure 
related parts will be reduced.   

Recognizing unintended input 
Another possible application of our prediction model is the 
reduction of accidental input by masking unintended areas. 
Based on our data analysis, the lift-off itself affords a 
coarse prediction of target direction, as the majority of 
touches we recorded were roughly planar. In addition, as 
the prediction target is updated, the potential area for 
touchdown will shrink. Therefore, the input system can 
label the touch events in the areas where touchdown is not 
likely as accidental events and ignore them.  

DISCUSSION  
Our results indicate that solving the problem of latency has 
clear implications about how users perceive system 
performance. If the predicted touchdown point is not 
accurate users can detect the difference, not always 
favorably, especially when presented with negative 
latency. On the other hand, it seems that if we are capable 
of eliminating perceived latency, with time, users will 
adapt and expect an immediate response out of their 
interactive systems.   

Our prediction model is not constrained to only solving 
latency. The approach is rich in motion data and can be 
used to enrich many UIs. For example, the velocity of a 
finger can be mapped to pressure, or the approach direction 
can be mapped to different gestures. Equally important, 
perhaps, is the possibility to predict when a finger is leaving 
a display but not landing again inside the interaction 
surface, effectively indicating that the user is stopping 
interaction. This can be useful, for example, to remove UI 
elements from a video application when the user is leaving 
the interaction region.  

The model relies on a high fidelity 3D tracking system, 
currently unavailable for most commercial products. Here 
we provide a detailed discussion about how to enable it in 
everyday life. We used a Vicon tracking system, running at 
120Hz, to capture the pre-touch data. As this high 
frequency tracking is not realistic for most commercial 
products, we tested the model at 60Hz, slower than most 
commercial sensors. Although prediction is delayed 8ms on 
average, the later fit has the benefit of increasing prediction 
accuracy, because the finger is closer to the display.  

Some commercial products already include accurate hover 
sensing technique, such as Wacom Intuos with EMR-based 
sensor and Leap Motion with vision-based sensor; both are 
able to run at 200Hz, with sub-millimeter accuracy. 
Moreover, the model predicts tapping location when the 
finger is 2.87cm and 3.22cm away from the screen in our 
studies; these results are within capabilities of EMR [12] and 
vision. Additionally, a number of plausible technologies for 
achieving hover sensing appeared recently in HCI research. 
HACHIStack [17] has a sensing height of 1.05cm above a 
screen with 31µs latency. Retrodepth [21] can track hand 
motion in a large 3D physical input space of 30x30x30cm. 
Therefore, we believe an accurate, low-latency hover sensing 
is on its way soon. We also envision that, when faster touch 
sensor and CPU finally bring the nearly zero tapping latency, 
this model will remain useful for achieving negative latency, 
impossible even for a zero-latency touch sensor. 

In this paper, we built a prediction model and evaluate long 
ballistic pointing tasks. However, in realistic tasks, the 
finger motion will be much more complex, with pauses, 
hesitation, and short tracking distances. To make the model 
robust to these changes, we propose the fine-tuning of two 
variables that determine when the system starts predicting: 
the vertical distance, tuned at 4cm (in Z) to avoid direction 
changes normal to touch approaches, and approach angle 
tuned at 23°  (for our system) to confirm that the finger 
entered a drop down phase. With this tuning, the model 
predicts location and time in the last 29% of the entire 
trajectory. Other kinematic features, such as the 
approaching velocity and direction can also be integrated 
into the model to make it more robust. Still, there is no 
doubt that the model would benefit from evaluation with 
real tasks, and we encourage the effort to make the model 
work perfectly in the real world. 

CONCLUSION 
We present a prediction model for direction, location, and 
contact time of a tapping action on touch devices. With this 
model, the feedback is shown to the user at the moment 
they touch the display, eliminating the touchdown latency. 
Results from the user study reveal a strong preference for 
unperceived latency feedback. Also, predicting the touch 
input long before the actual touch brings the opportunity to 
reduce not only the visual latency but also latency of 
various parts of a system that are involved in the response 
to the predicted touch input. 
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