

High Rate, Low-Latency Multi-Touch
Sensing with Simultaneous Orthogonal Multiplexing

Darren Leigh1, Clifton Forlines1, Ricardo Jota1,2, Steven Sanders1, Daniel Wigdor2

Tactual Labs1
New York, NY

USA
{first.last}@tactuallabs.com

Department of Computer Science2

University of Toronto
Toronto, ON, Canada

daniel@dgp.toronto.edu

ABSTRACT
We present “Fast Multi-Touch” (FMT), an extremely high
frame rate and low-latency multi-touch sensor based on a
novel projected capacitive architecture that employs
simultaneous orthogonal signals. The sensor has a frame rate
of 4000 Hz and a touch-to-data output latency of only 40
microseconds, providing unprecedented responsiveness.
FMT is demonstrated with a high-speed DLP projector
yielding a touch-to-light latency of 110 microseconds.

INTRODUCTION
Touch sensors in commercial use today typically operate at
60-85 frames per second. Such frame rates imply a “best”
worst-case latency of at least 16 milliseconds, from the time
a user’s finger touches the sensor until the moment that
information is made available to the system bus. Recent work
from Microsoft and the University of Toronto has
demonstrated that as little as 25 milliseconds of latency can
impair performance [1], and that two milliseconds can be
noticed by users of direct-touch systems [2]. Thus, it is the
first goal of the present research to build a sensor capable of
supporting an overall end-to-end latency of less than two
milliseconds.

Ng et al. describe the results of analysis that suggest typical
mobile devices have “end-to-end” latency, that is, a time
between an input and the result being shown on the display,
in the range of 75-125 milliseconds [2]. Other sources
provide different measures of latency [3]. This variability is
expected given that end-to-end latency includes performance
characteristics of user-space software. As Ng et al. further
describe, there are three broad sources of latency: the touch
sensor, the software stack, and the display controller along
with its refresh rate. The latency in these components is
additive: while introducing a fast sensor will not, on its own,

enable sub-2 millisecond responses, it is necessary to achieve
this goal. Further, as Jota et al. describe, the impairment of
user input to direct touch displays caused by latency is a
continuous function – therefore any reduction of latency is
expected to improve input performance [1].

Traditional projected capacitive (PCAP) sensors utilize a
time-division multiplexing (TDM) approach to sensing: the
controller continuously monitors sense traces, shown as
columns in Figure 1 (top). Each drive trace, shown as a row,
is then sequentially activated. If no touching object is
present, an expected crosstalk signal is transferred from the
active drive trace to all sense traces, and no touch is recorded.
If, however, the user’s finger is present on the sensor, a
different amount of signal is transferred. The (x,y)
coordinates of a touch are determined as follows: in the
example in the figure, the x coordinate is the identity of the
sense trace at which the signal change is detected, and the y
coordinate corresponds to the drive trace that is active at the
time of the change.

PCAP sensors offer a number of advantages over resistance-
based sensors; durability and rigidity among them. Even
more important in today’s commercial market is their ability
to detect multiple simultaneous touches on a transparent
surface. Thus, their inherent limitation in sensor throughput
has been tolerated.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Request permissions from permissions@acm.org.
UIST '14, October 05-08 2014, Honolulu, HI, USA
Copyright is held by the owner/author(s). Publication rights licensed to
ACM. ACM 978-1-4503-3069-5/14/10…$15.00.
http://dx.doi.org/10.1145/2642918.2647353

Figure 1: Top row: Traditional TDM-based projected
capacitive sensors scan each row sequentially, which takes

time. Bottom row: FMT sensors scan all rows simultaneously.

Time

Novel Hardware II UIST’14, October 5–8, 2014, Honolulu, HI, USA

355

Our goal was to build a projected capacitive sensor, complete
with all of these advantages, which is also able to perform at
a significantly higher rate. To achieve this, we eliminate the
sequential scanning inherent in a TDM approach by instead
activating all drive traces simultaneously using orthogonal
signals: instead of looking for a signal strength change at a
given sense trace, the controller examines each sense trace
for the strength of every orthogonal signal transmitted on the
set of drive traces. This is shown in Figure 1 (bottom).

RELATED WORK
A thorough review of the literature examining interaction
latency is provided in [1], and so we omit it here. Instead, we
briefly review alternative methods for sensing touch:
traditional PCAP, optical techniques, and resistive methods.

The use of capacitive sensing of touch input dates to at least
the mid-1960’s [4], and for multi-touch to the mid 1980’s
[5]. More recently, SmartSkin [6] was a PCAP system that
used a TDM scheme, transmitting bursts of 400 kHz square
wave on each row, in turn, and looking for the response at
the columns. SmartSkin had a 30 Hz frame rate, and
therefore a “best” worst-case latency of about 33
milliseconds. Westerman et al. also demonstrated a similar
method [7], and illustrated its use to compose complex multi-
touch gestures on an opaque touchpad. That work formed the
basis of the FingerWorks product line.

DiamondTouch [8] was a multi-user touch system, though
not fully multi-touch: it could sense multiple touches, but
only as projections along the rows and columns. It employed
the rows and columns identically as transmitters, with
receivers in contact with the users’ bodies for identification
purposes. It was, therefore, not PCAP, but a close cousin.

DiamondTouch used a TDM scheme, transmitting a 100 kHz
square wave burst on each row/column in turn. Several
versions of this system were produced, with frame rates
ranging from 20 to 40 Hz, implying “best” worst-case
latencies from 25 to 50 milliseconds.

PCAP forms the basis of most multi-touch screens used to
date. In contrast, alternative sensing techniques for touch
have also been demonstrated.

A number of optical techniques have been demonstrated for
touch input. As early as 1982, optical methods were
employed for multitouch input using a camera for imaging
and diffuse illumination for lighting [9]. More recently,
frustrated total internal reflection (FTIR) systems use
cameras to detect where light leaks from a sheet of plastic
due to touches frustrating the total internal reflection of light
that is propagating within [10]. Camera-based optical
techniques are difficult to implement in thin form factors,
such as mobile devices, because of the standoff necessary for
the sensor – this is manifest as a large volume behind the
display, or as a bezel surrounding the screen. Further, for
techniques that employ 2D cameras, the latency is limited by
processing time, as well as the frame rate of the sensor:
standard 60 frame-per-second cameras would imply a “best”
worst-case latency of 17 milliseconds, similar to traditional
PCAP techniques. Bezel-mounted optical sensors enable
sensing of touch [11], and do not require 2D image
processing. However, they too suffer from the need for a
bezel. A detailed overview of many different optical
techniques is provided in [12].

Figure 2: Orthogonal signals are simultaneously transmitted on each row. Where touches occur (the pink rings in the figure),
signals from the affected rows are coupled into the affected columns. Column receivers determine the amount of each row

signal present on that column to determine the affected row/column intersections.

S ig n a l 1

S ig n a l 2

S ig n a l 3

S ig n a l 4

Novel Hardware II UIST’14, October 5–8, 2014, Honolulu, HI, USA

356

Ng et al. developed a very fast multi-touch system based on
a resistive technique, and used it to study and characterize
low-latency touch interaction [2]. They demonstrated an end-
to-end latency of about one millisecond. Unfortunately, the
design and technique of their touch system is proprietary and
has never been publically disclosed, beyond a cursory
mention of its “resistive” nature. Because of limitations in
durability and requirements of application of active pressure,
resistive techniques methods have largely been supplanted
by PCAP. From Ng we draw the method for enabling fast
visual of output of sensor data, completing the quick round
trip. We utilize the same projector, and similar FPGA-based
approach to generating the imagery.

ORTHOGONAL SIGNAL CAPACITIVE TOUCH SENSING
Our goal is to detect touch events from human fingers, or
other capacitive objects, on a two-dimensional manifold such
as a planar surface. It is important that multiple simultaneous
touch events be detected and distinguished from each other.
For the reasons we have described, it is also important that
the touch events be detected, processed and supplied to
downstream computational processes with very low latency,
i.e. on the order of one millisecond or less.

To accomplish this goal, we have developed a projected
capacitive method that has been enhanced for a high update
rate and low latency measurement of touch events. Our
technique employs parallel processing and higher frequency
waveforms to gain the above advantages. We have also
developed methods to make the measurements sensitive and
robust, allowing the technique to be used on transparent
display surfaces and permit the economical manufacture of
products that employ it.

BASIC TECHNOLOGY
The touch surface is comprised of a series of rows and
columns1, along which signals can propagate. The rows and
columns are designed so that, when not being touched, a
negligible amount of signal is coupled between them.

A different signal is transmitted onto each of the surface’s
rows. These signals are designed to be “orthogonal” in the
mathematical sense, i.e.

 න ௜݂ሺݔሻ	 ௝݂ ሺݔሻ	݀ݔ ൌ 0 ,			݅ ് ݆	 Equation 1

so that a linear combination of them can be separated and the
individual signals distinguished from one another. The use
of orthogonal signals allows us to take advantage of
matched-filter receiver techniques, which can be optimal
under real-world conditions.

When a row and column are touched simultaneously, a small
amount of the signal that is present on the row is coupled into

1 The nature of the rows and columns is arbitrary and the
particular orientation is irrelevant. In fact, it is not even
necessary that the rows and columns be in a square grid.

the corresponding column. A receiver, attached to each
column, is designed to receive any of the transmitted signals,
or an arbitrary combination of them, and to individually
measure the quantity of each of the orthogonal transmitted
signals that is present on that column.

Touch events correspond to the received signals on the
columns. For each column, the different signals received
there indicate which of the corresponding rows is being
touched simultaneously with that column. The quantity of
each signal received is related to the amount of coupling
between the corresponding row and column and may indicate
the area of the surface covered by the touch, the pressure of
the touch, etc. A touch is detected for a particular row /
column intersection when that intersection’s row signal is
detected (above a threshold) by the intersection’s column
receiver.

Signal Pathway
The basic architecture of FMT is shown in Figure 2. The row
signals, transmitted with amplitude ܸ , pass through the rows,
fingers and columns and then into the column receivers,
where they are detected with a matched filter. The matched
filter (one for each expected row signal) integrates over a
time period ߬, producing a measured level for that row signal
on that column. That level can be expressed by the formula:

received	signal	level

ൌ Equation 2 ܸ߬ܣߙ

where ܣ is the area touched by the finger and ߙ is a scale
factor that is a function of signal attenuation along the rows
and columns, coupling between the finger and the touch
surface, and various other gain parameters. To get the best
system performance, it is important that we maximize the
received signal level by making good design choices.

Choosing a Set of Orthogonal Signals
There are an infinite number of orthogonal signal sets that
could be used to implement our fast touch sensor and, in
theory, they are all equivalent. In practice, the specific details
of each signal type have advantages and disadvantages that
will cause us to choose one that is optimal for our needs.
Some of these factors include:

 Ease and expense of implementation
 Dynamic range, or the ability to distinguish

simultaneous weak touch signals from strong ones
 Immunity to noise and interference

A good signal set will be easy and inexpensive to implement,
have high dynamic range and be relatively immune to noise
and interference. A real-world implementation will require
some tradeoffs between these.

Novel Hardware II UIST’14, October 5–8, 2014, Honolulu, HI, USA

357

The choice of signal sets is similar to those used for
multiplexing in communication systems, and includes:

Time Division Multiplexing (TDM), in which the
measurement period is divided into segments and each
channel is assigned one of those segments in which to
transmit.

Frequency Division Multiplexing (FDM), in which
each channel is assigned a separate frequency band.

Code Division Multiplexing (CDM), in which each
channel is a assigned a separate “spreading code”: a
random-looking waveform that is statistically
uncorrelated with the others.

Time division multiplexing, as described in the introduction,
is the technique used by SmartSkin [6] and most other PCAP
touch systems today. It has the advantage of being simple to
implement, with a minimum of hardware. However, the
inherent delays from time-slot to time-slot add latency to the
system. Removing this latency is possible by decreasing the
duration of the time slots, but this would lower the
integration period ߬ of the receivers, decreasing the received
signal strength (per Equation 2).A designer can compensate
for the shorter integration period by increasing the transmit
amplitude ܸ – and commercial products often do this – but
there are practical limits. Increasing the amplitude to achieve
very low latencies might require the transmitter to put out
hundreds of volts.

Frequency division multiplexing and code division
multiplexing both allow the entire frame time to be used for
the receiver integration period, because the orthogonal
signals are transmitted simultaneously and there is no need
to divide the frame into separate time slots.

CDM has the advantage of being easy to generate and receive
(because the modulation time reference is local), and is more
immune to external noise and interference due to the
“random” nature of its signals. Unfortunately, CDM suffers
from dynamic range problems, making it difficult to receive
weak signals in the presence of strong ones.

Even worse, CDM signals are broadband and can suffer
degradation if the communication channel’s frequency
response is not “flat” (the same at all frequencies). A PCAP
system being touched at multiple points at random times by
uncharacterized appendages is unlikely to present a flat
frequency response. This problem will be exacerbated if the
sensor’s rows and columns are made from a material that is
less conductive than would be desired, which is the case with
transparent conductors such as indium-tin-oxide (ITO).

Frequency division multiplexing can be very robust under
bad channel conditions because a channel tends to be well-
behaved over the narrow bandwidth occupied by its
individual frequency band. For this reason, variants of it,
such as orthogonal frequency division multiplexing
(OFDM), are widely used in communication systems with
poorly-behaved channels, including WiFi, digital TV

broadcasting and power-line communication. FDM can be
more prone to external noise and interference, but there are
mitigation techniques that can be employed to lessen the
effects.

The dynamic range of FDM depends strongly on the receiver
architecture, but it is possible to achieve results almost as
good as TDM.

For these reasons, we chose to use frequency division
multiplexing for FMT. In the simplest implementation, the
orthogonal signals being transmitted onto the rows are
unmodulated sinusoids, each of which has a different
frequency. The frequencies are chosen so that they can be
easily distinguished from each other in the receiver.

We use a “comb” of frequencies, where the spacing between
adjacent frequencies is constant, to allow easy detection
using a discrete Fourier transform (DFT). Due to the Fourier
relationship between time and frequency, the spacing
between frequencies, f, must be at least the reciprocal of the
integration period . Otherwise the signals will not be
“orthogonal” and will be confused with each other in the
receiver. For example, if we desire to determine which row
signals are present at a column receiver, and we wish to do
so once per millisecond, then the frequency spacing f > 1/
or greater than one kilohertz. In reality, the frequency
spacing should be greater than the minimum to permit a
simpler, more robust design.

We also ensure that the highest transmitted frequency is less
than twice the lowest, in order to avoid any problems with
harmonics. Harmonics are integer multiplies of a
fundamental frequency that are created by non-linearities
and other problematic physical processes. If our highest
frequency is greater than twice the lowest, then it is possible
that a harmonic of a low frequency will be interpreted as a
legitimately transmitted signal, causing false readings. By
constraining our transmitted frequencies so that none of their
harmonics would overlap any of our deliberately generated
signals, we can avoid this problem.

The Fourier and harmonic conditions described above
combine to constrain the minimum signal frequencies that
we can successfully implement. If an FMT touch sensor has
݊ rows and a latency of ܮ, then we must transmit ݊
frequencies that are at least 1 ⁄ܮ apart, yielding a minimum
frequency bandwidth of ݊ ⁄ܮ . Because the highest frequency
can be no more than twice the lowest, the minimum signal
we can transmit must be no lower than ݊ ⁄ܮ . Therefore, for a
forty row touch sensor with a latency of one millisecond, the
lowest possibly frequency that can be used is 40 kHz.

Our FMT demonstrator has thirty rows and therefore requires
thirty separate frequencies — one per row. In its fastest
mode, the system has a frame update period of 40
microseconds, which means that our frequency spacing must
be at least 1 40	μsec⁄ or 25 kHz. We use an actual spacing
of about 163 kHz, with our lowest frequency being 5.371
MHz and our highest 10.091 MHz.

Novel Hardware II UIST’14, October 5–8, 2014, Honolulu, HI, USA

358

Modulated sinusoids
The use of unmodulated sinusoids has two problems. First,
the sinusoids might cause radiofrequency interference to
other devices near the touch surface, and a device employing
such might have problems passing regulatory testing (e.g.
FCC, CE). Second, sinusoids in the environment, whether
from deliberate transmitters or from other interfering devices
(perhaps even another identical touch surface), might cause
false or degraded touch measurements on our device.

An effective technique for minimizing such interference is to
modulate or “stir” the signals we are transmitting in a manner
such that we can demodulate (“unstir”) or otherwise
compensate for the modulation of the signals when they
reach the receiver. Signals emitted or received under such a
technique are highly uncorrelated with anything else, and so
act as mere noise instead of appearing to be similar to other
signals present in the environment.

Two straightforward ways of doing this are frequency
modulation and direct-sequence spread spectrum
modulation. FMT was built to do the latter, and includes bi-
phase modulators (multiplied by +1 or -1, i.e. selective
inversion) in both the row transmitters and the column
receivers. These modulators share a control signal so that all
of the signals, at both the transmitters and receivers, flip
polarity at the same time. The control signal is pseudo-
random, causing the transmitted signal to spread in a wider
bandwidth on the touch surface, and then be unspread in the
receiver before we attempt to detect the sinusoids.

Care must be taken not to spread the signals too much, or we
will run into the channel problems described above for CDM.
A good rule of thumb is to spread on the order of the row
frequency spacing.

Signal Detection
To determine which rows and columns are being simul-
taneously touched, we need to receive any signals present on
the columns and determine which of the transmitted
frequencies appear. This can be done with common
frequency analysis techniques, such as a Fourier transform
or filter bank.

From each column’s signal, we determine the strength of
each of the transmitted frequencies that it contains. If the
strength of a frequency is greater than some threshold, then
we have determined that there is a touch event between the
column and the row corresponding to that frequency. Signal
strength information can be used to determine the area of the
touch event, which may correspond to various physical
phenomena including the size of the finger, the pressure with
which it is pressing down, the fraction of row/column
intersection that is being touched, etc.

Once we calculate the signals strengths for each frequency
(corresponding to a row) for each column, we can create a
two-dimensional “heat map” of these, with the signal
strength being the value of the map at that row/column
intersection.

The heat map can be thresholded to determine touch events,
or can be used to infer information about the shape,
orientation, etc. of the object touching the surface.

Our FMT demonstrator implements a complete radio receiver
with a Fast Fourier Transform (FFT) detection scheme for
every column. This digitizes the RF waveform, detects the
sinusoids and performs digital signal processing on them.

POST PROCESSING
After the signal strengths from each row in each column are
calculated, the system does some post-processing to convert
this 2-D “heat map” into usable touch events. The process
includes “field flattening”, touch point detection,
interpolation and touch point matching between frames.

Because we requireme very low latency, the processing steps
are as optimized and parallelized as possible.

Field Flattening
Due to signal attenuation across rows and columns and other
systematic error sources that affect signal strengths, we first
perform field flattening by normalizing these strengths
across the whole touch surface. This can be done with a
known calibration object, measuring the signal strength
response that it causes for every row/column intersection,
and computing both an additive and multiplicative offset for
that intersection. When the offsets are applied, the responses
are normalized across the entire touch surface.

Our FMT demonstrator does not require much field
flattening, because its touch surface uses copper rows and
columns, which are very conductive. Field flattening is much
more important when compromise conductors, such as
transparent ITO, are used.

Touch Point Detection
Once the heat map is generated and “field flattened”, we
determine the coarse touch points. This is done by finding
local maxima in the normalized signal strengths. We use a
fast and parallelizable method for finding these, by
comparing each element of the normalized heat map to its
neighbors and labeling it a local maximum if it is strictly
greater than all of them, and above a given threshold.

We can define the set of neighbors in various ways, but the
two most useful sets will probably be the Von Neumann
neighborhood and the Moore neighborhood (see Figure 3).
The Von Neumann neighborhood consists of the four
elements that are vertically and horizontally adjacent to the
element in the center (i.e. the elements to the north, south,
east and west of it). This is also called the “four-connected”
neighborhood. The Moore neighborhood consists of the eight
elements that are vertically, horizontally and diagonally
adjacent to the element in the center (i.e. the elements to the
north, south, east, west, northeast, northwest, southeast and
southwest of it). This is also called the “eight-connected”
neighborhood.

The neighborhood we choose will depend on the interpolation
scheme we use to calculate the fine touch points.

Novel Hardware II UIST’14, October 5–8, 2014, Honolulu, HI, USA

359

Interpolation
Once the coarse touch points are determined, we compute the
fine touch points using interpolation. A straightforward way
to do this is to model the capacitive contact of a distributed
touch as a second-order function in two dimensions, fitting it
to a paraboloid.

For a Von Neumann neighborhood, the relevant points look
like Figure 3 (left) with the central blue element being the
local maximum and the subscripts being the coordinates of a
particular element relative to it. The positions and signal
strengths of the five elements allow us to fit them to the
following equation:

ଶݔܣ ൅ ଶݕܥ ൅ ݔܦ ൅ ݕܧ ൅ ܨ ൌ z Equation 3

where ݔ and ݕ are the position of an element, z is the signal
strength of the element, and ܧ ,ܦ ,ܥ ,ܣ and ܨ are the
coefficients of the second-order polynomial. Relative to the
central point, all of the element ݕ ,ݔ positions are constant.
The z values are the measured signal strengths at each
element, and thus are known. The five polynomial co-
efficients are the only unknowns, so we need five
simultaneous equations to solve for them. Each equation
represents one of the five points, including the central point
and its four neighbors.

We solve for the polynomial coefficients by inverting a
Vandermonde-like matrix, which yields:

ۏ
ێ
ێ
ێ
ۍ
ܣ
ܥ
ܦ
ܧ
ےܨ
ۑ
ۑ
ۑ
ې

ൌ
ଵ

ଶ

ۏ
ێ
ێ
ێ
ۍ
0 1 െ2 1 0
1 0 െ2 0 1
0 െ1 0 1 0
1 0 0 0 െ1
0 0 2 0 ے0

ۑ
ۑ
ۑ
ې

ۏ
ێ
ێ
ێ
ۍ
଴,ଵݖ
ଵ,଴ିݖ
଴,଴ݖ
ଵ,଴ݖ
ے଴,ିଵݖ

ۑ
ۑ
ۑ
ې

 Equation
4

Note that the polynomial coefficients are a linear
combination of the signal strengths and that only simple
multiplications, involving negation and a single shift, are
required to calculate them. This means that they can be
efficiently computed in an FPGA or ASIC. By fitting our
data to a paraboloid, we are assuming that the fine touch
point is at its maximum, which occurs at the point
,௙ݔ :where	௙ݕ

௙ݔ ൌ െ
஽

ଶ஺
 and ݕ௙ ൌ െ

ா

ଶ஼

The values ݔ௙ and ݕ௙ are independent of each other, with ݔ௙
depending only on the signal strengths of the elements to the
left and right of the center point, and ݕ௙ depending only on
the signal strengths of the elements above and below it.

For the Moore neighborhood, the relevant points look like
Figure 3 (right). The positions and signal strengths of the
nine elements can be fit to the following second-order
equation:

ଶݔܣ ൅ ݕݔܤ ൅ ଶݕܥ ൅ ݔܦ ൅ ݕܧ ൅ ܨ
ൌ z

Equation 5

which is similar to the previous case, but with an added ݕݔ
cross term. This is an over-determined system with nine
simultaneous equations (one per element), so we must
employ a least-squares technique to solve it. This yields:

ۏ
ێ
ێ
ێ
ێ
ۍ
ܣ
ܤ
ܥ
ܦ
ܧ
ےܨ
ۑ
ۑ
ۑ
ۑ
ې

 ൌ
ଵ

ଷ଺

ۏ
ێ
ێ
ێ
ێ
ۍ
6 െ12 6 6 െ12 6 6 െ12 6

െ9 0 9 0 0 0 9 0 െ9
6 6 6 െ12 െ12 െ12 6 6 6

െ6 0 6 െ6 0 6 െ6 0 6
6 6 6 0 0 0 െ6 െ6 െ6

െ4 8 െ4 8 20 8 െ4 8 െ4ے
ۑ
ۑ
ۑ
ۑ
ې

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
ଵ,ଵିݖ
଴,ଵݖ
ଵ,ଵݖ
ଵ,଴ିݖ
଴,଴ݖ
ଵ,଴ݖ
ଵ,ିଵିݖ
଴,ିଵݖ
ଵ,ିଵݖ ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

Equation 6

Note again that the polynomial coefficients are a linear
combination of the signal strengths. The multiplications are
slightly more complicated, but many of the multiplicands can
be factored out and applied a single time near the end of the
calculation to make the computation more efficient. Because
we are interested in the maximum of the paraboloid –
meaning that overall scale factors are irrelevant and we are
only concerned with relative values and the arguments which
maximize the function – we may be able to cancel out many
of them altogether.

 The fine touch point is at the maximum of the paraboloid,
which occurs at the point ݔ௙, :where	௙ݕ

௙ݔ ൌ ሺܧܤ െ ሻܦܥ2 ሺ4ܥܣ െ ⁄ଶܤ ሻ		

and

௙ݕ ൌ ሺܤܦ െ ሻܧܣ2 ሺ4ܥܣ െ ⁄ଶܤ ሻ

Figure 3: On the left is a Von Neumann neighborhood.
On the right is a Moore neighborhood.

(0, +1)

(0, 0)

(0, ‐1)

(+1, 0)(‐1, 0)

(0, +1)

(0, 0)

(0, ‐1)

(+1, 0)(‐1, 0)

(+1, +1)(‐1, +1)

(+1, ‐1)(‐1, ‐1)

Figure 4: An elliptical fit to an asymmetric touch point.
The aspect ratio and tilt angle can provide useful

information about the touching object.



Novel Hardware II UIST’14, October 5–8, 2014, Honolulu, HI, USA

360

For the eight-connected neighborhood, the values ݔ௙ and ݕ௙
are not independent of each other. Both depend on the signal
strengths of all eight neighbors. This might seem like a
disadvantage because of the increased computational burden,
and the possibility that certain combinations of signal
strengths will produce singular values for the fine touch
points. However, there are advantages as well. Because of
the least-squares nature of the eight-connected calculation, it
is more robust against noisy signal strength values. Small
errors in one signal strength will be compensated for by the
increased amount of data used in the calculation, and the self-
consistency of that data.

Another advantage of the eight-connected neighborhood is
that it provides an extra piece of information that might prove
useful as part of a user interface. The ܤ coefficient of the ݕݔ
cross-term can be used to characterize asymmetry in the
fitted paraboloid and, along with the aspect ratio information
inherent in the ܣ and ܥ coefficients, can allow software to
determine the angle at which the touch is occurring.

Figure 4 shows a notional touch point with an elliptical cross
section, which can be obtained by truncating the paraboloid
at a particular z value. The values of a and b can be obtained
from the ܣ and ܥ coefficients of the polynomial, and they
give us information about the aspect ratio of the object
touching the surface. For example, a finger or stylus would
not necessarily be circularly symmetric, and the ratio of a to
b can tell us about its shape.

Knowledge of the angle  can tell us how the ellipse is
oriented, which might indicate which way the finger or stylus
is pointing or at what angle it is tilted with respect to the
touch surface. We can calculate  from the eigenvalues and
eignevectors of the 2 x 2 matrix ܯ given in Equation 7:

ܯ ൌ ൤
ܣ 2/ܤ
2/ܤ ܥ ൨ Equation 7

Blob Detection

The above post-processing steps work for isolated touches,
like single fingers, but don’t handle extended “blob”-like
touches. The FMT demonstrator currently does not do blob
detection and, instead, responds to an extended touch with a
swarm of single touches. We are currently investigating
highly-parallel, low-latency algorithms for detecting and
representing extended touches.

Frame Matching

To properly track objects moving on the touch surface over
time, it is important to match the calculated touch points with
each other between frames. While this is a fundamentally
hard problem – and insoluble in the general case – we are
aided by geometry and physics. Because the items that are
in contact with the touch surface are of finite size, and move
according to certain physical principles, we will not
experience the worst cases.

Fingers and styluses have a minimum size and are unlikely
to approach each other closely enough to cause an
ambiguous case. They also travel at speeds characteristic of
the motion of a human arm, which bounds the problem.

Because the our touch system has such a high update rate –
well over a kilohertz – fingers and styluses touching the
surface cannot move arbitrarily far or at extreme angles from
one frame to the next. This makes the problem much easier,
allowing us to do frame matching mostly by choosing the
closest point in adjacent frames. Another useful heuristic for
matching touch points between frames is the use of dynamics,
calculating the time derivatives of touch point positions and
using them to predict the likely position in the next frame. We
can also use the signal strengths and shapes of previous touch
points to distinguish between touch points and to infer likely
candidates for matches. Both the Moore neighborhood
calculation and extended blob matching would be useful.

A robust frame matching system would likely combine all of
the above techniques, performing simple matching in most
cases and more complicated matching in ambiguous ones.

IMPLEMENTATION
Our demonstration system appears in Figure 5. It was built
around circuit boards and development kits that were
intended for radio astronomy use. We designed the FMT
demonstrator to be extremely flexible and adaptable so that
we could experiment with parameters and new use cases. We
can control the transmit signal strengths, independently set
the transmit frequencies on a per-row basis, control the
receive timing and FFT spacing, turn the CDM modulation
of the sinusoids on and off, mask the analog-to-digital
converter outputs to simulate different ENoBs (effective
numbers of bits), etc. This flexibility is very useful in
exploring ways that the system can be optimized, trying new
touch substrate materials, etc.

The Touch Surface
The touch surface itself was created from a two-layer printed
circuit board. It approximates a 25 centimeter diagonal
screen, similar to an Apple iPad, and contains 30 rows and
40 columns. The top layer contains the rows and columns,
and the bottom layer contains the ground plane (and jumpers
for the columns). The row and column pattern consists of
interlocking diamond shapes, similar to those used by
DiamondTouch and in many commercial PCAP touch
sensors. This geometry provides the maximum capacitive
coupling between the touching finger and the rows and
columns, while minimizing cross talk between those. The
row and column pitch is 5 millimeters, which we have found
is well matched to the size of human fingers.

Need for a Ground Plane
Not all PCAP touch systems use a ground plane under the
rows and columns. The ground plane helps with several
issues. First, it ensures that all capacitive interactions occur
very close to the physical surface, eliminating “hover” and
producing a very satisfying touch experience. Without the
ground plane, the touch detection occurs more gradually as a
finger approaches the surface, producing a “mushy” feel.

Novel Hardware II UIST’14, October 5–8, 2014, Honolulu, HI, USA

361

Second, the large capacitance between the ground plane and
the rows and columns dominates the smaller capacitance
between them and the environment. This means that, when a
row/column intersection is touched, the amount of row signal
transferred onto the column increases. Without the closely
coupled ground plane, the signal would actually decrease.
Most commercial PCAP systems do not use a ground plane.
Signal generation hardware
Our row signal generators consist of a bank of forty Analog
Devices AD9834 direct digital synthesizers that are set up to
generate sinusoids in the range from DC to about 12 MHz.
They are individually programmable and contain a phase
selection input that can be used for bi-phase modulation.
They are followed by an amplifier that lets us transmit row
signals with amplitudes up to five volts peak-to-peak.

Receiver hardware
Our receiver front ends consist of forty Texas Instruments
VCA8613 programmable gain amplifiers with a gain of up
to 40 dB and a 12 MHz low-pass filter. These feed a bank of
analog-to-digital converters, based on the TI ADS5272,
which sample at a rate of 50 Msps. The ADCs have high-
speed serial outputs that feed the touch processing unit.

Processing
The processing unit is a “mini-ROACH” (Reconfigurable
Open Architecture Compute Hardware) field programmable
gate array (FPGA) board that was developed as part of the
CASPER (Collaboration for Astronomical Signal Processing
and Electronics Research) effort [13]. The mini-ROACH is
based on a Xilinx Virtex-5 FPGA and includes Ethernet and
a large amount of digital I/O. It performs both the row signal
detection for each column receiver and also post-processing
to turn the “heat map” into useful, interpolated touch events.

Our processing does not use any “tricks”, such as assuming
a limited number of touch points or where the touches might
be. There are no fundamental limits on the number of touch
points that can be detected or tracked. For convenience of
implementation, the firmware is currently limited to sixteen
simultaneous touches, but this can easily be changed by
recompiling with new parameters.

Outputs
The FMT processor board has two outputs, including a fast,
low-latency parallel port that sends processed touch events
to the high-speed display, and an Ethernet port. The Ethernet
port is used for control and monitoring, including being able
to upload raw “heat maps” to a computer for visualization
and debugging. The low-latency parallel port includes a “dial
a latency” feature, allowing us to add calibrated amounts of
delay to the demonstrator for testing purposes.

Display
We required an extremely fast video display to demonstrate
FMT’s capabilities without adding its own excessive latency.
The DLP Discovery 4100 kit from Texas Instruments, which
uses their digital micro-mirror technology to modulate light
at a 32 kHz rate, was able to provide the necessary speed and
low latency. This is the same display used by Ng et al [2].

PERFORMANCE
The touch sensor operates with an update rate of 4 kHz and
each of those frames has a latency of 40 microseconds. The
mismatch was done for implementation convenience and,
during the remaining 210 microseconds of a 4 kHz frame, the
processor is basically idle. A more optimized system could
use the extra time to provide a 25 kHz frame rate, or to
perform a longer integration (from 40 microseconds to 250
microseconds), increasing the system’s signal-to-noise ratio
by 8 decibels.

We have calculated the touch sensor’s inherent latency from
our FPGA code, and also directly measured the entire
system’s end-to-end (touch instant to display output) latency.
We used a piezo transducer as a fast impact sensor to detect
the instant of touch by attaching it to a fingertip and tapping
the sensor quickly. The piezo transducer generates a voltage
when it is mechanically strained, which is easily seen on
oscilloscope when the transducer is tapped on a hard surface.
Its metal construction registers a touch point on the surface
as well as a finger alone does. We also used a photodiode
sensor to measure the light level being projected onto the
tapping finger. Using an oscilloscope, we measured the time
difference between the tap and the displayed response. Our
system’s end-to-end latency, from touch to light, is
approximately 110 microseconds.

Because FMT makes no prior assumptions about the number
and kinds of touches, and merely reports high-speed samples
of where it has been touched, measuring the latency of a
single finger tap is sufficient to know he latency of any other
kind of touch operation, such as dragging.

Figure 5: The FMT demonstrator. Note the dot of light on
the finger, emanating from the high-speed projector.

Novel Hardware II UIST’14, October 5–8, 2014, Honolulu, HI, USA

362

High speed video, taken at 400 fps and 1200 fps, confirms
these figures and shows a dot of light keeping up with and
tracking the finger very smoothly. There is no noticeable lag.

Variable Latency “Pong”
To see how changes in latency affect video game play, we
implemented a version of the classic “Pong”, but with one
player experiencing no perceptible latency and the other
burdened with 150 milliseconds of lag. While we did not do
a formal user study, there was anecdotal consensus that the
“zero” latency side was much easier to play. The high latency
side required some getting used to, but even so, was
significantly disadvantaged.

IMPLICATIONS
An extremely low-latency touch system opens up many new
application areas. Opaque FMT can be used to implement
highly-responsive track pads and game controls, providing
unprecedented, immersive gaming experiences.

FMT is not limited to flat surfaces, and could be
implemented on any two-dimensional manifold. Sports
equipment, such as golf clubs and tennis rackets, could be
instrumented to show where the player’s grip is, and how it
changes over the course of a swing.

Automobile dashboards, steering wheels and entertainment
systems could take advantage of high-resolution, low latency
touch to permit the driver to control the cabin environment
in an intuitive, almost subconscious manner; because latency
makes a user interface harder to use and causes distraction,
removing that latency could keep more of the driver’s
attention on the road and increase traffic safety.

Transparent versions of FMT can be designed into tablets,
phones and other mobile devices. Although these will not
achieve the strikingly low end-to-end latencies described
here, due to the delays added by their software and display,
about 15-20 milliseconds of latency will be removed in a
stroke, which will incrementally improve the user
experience. And as latency is removed from other parts of
these devices, we will approach our goal of user interfaces
that have “zero” perceptible lag.

CONCLUSIONS
Our system works well and has a very good feel. It’s scalable
to both large and small sizes, due to PCAP’s need to connect
only rows and columns (which scale linearly), while the
touch surface area scales as thee square.

When designing such a fast, low-latency system, we found it
useful to think in terms of radio frequency design
(transmission lines, signal strength, cross-talk, modulation)
instead of slower, precision electronic design (capacitors,
charge, electric field). Although both terminologies can be
used to describe the same physical implementation, we
believe that the former mindset helped to influence our
design decisions to meet our goals more rapidly and with a
better final outcome. FMT’s rows and columns, above a
ground plane, are in effect leaky transmission lines between
which a finger can induce cross-talk.

FUTURE WORK
Although our demonstration surface is opaque and uses
front-projection, we realize that many practical commercial
products will require a transparent touch surface on top of an
LCD or OLED display, as might be found on a mobile
computing device. We are currently working toward a
transparent version that will provide one-millisecond class
performance with existing (or perhaps optimized) ITO and
metal mesh touch sensors, despite their lower conductivity.

If multiple users are touching the surface at the same time, it
would be useful to disambiguate one user’s set of touches
from the others’. This would allow proper recognition of
multi-finger gestures by each user. We believe that it would
be possible to implement such a capability by taking
advantage of residual row signals that travel through a user’s
body, from each of their touching fingers to the others. We
are actively investigating this area.

We are also researching the possibility of including an active
stylus capability, in which the stylus transmits its own
compatible set of orthogonal signals to the touch surface. We
believe that this might be a method of providing a very rich,
multimodal input experience, including extremely low
latency.

The current FMT demonstrator is bulky and power hungry,
consuming nine watts (not including the high-speed
projector). We are working to move the technology onto an
ASIC, which would permit ultra-low latency touch capability
in a much smaller form factor that consumes much less
energy. We are also investigating power saving features that
would allow FMT to be used on even highly constrained
battery-powered devices.

One of our goals for future work is attempting to determine
if virtual interaction, implemented with a low-latency touch
sensor and display, can sufficiently imitate a real-world
physical interaction to fool an observer. We call this the
“Touch Turing Test”, because it is analogous to Alan
Turing’s famous thought experiment on how to determine if
a computer can be considered “intelligent” [14]. In our case,
we wish to test how closely virtual interactions can come to
their real world counterparts. We believe that this is
important because the human mind evolved with the
constraints of the physical world and is more accustomed to
these natural types of interaction. User interfaces designed
with this in mind may behave in better and more interesting
ways.

ACKNOWLEDGMENTS
We would like to acknowledge and thank Rick Raffanti of
Techne Instruments, who put together the FMT sensor
demonstrator, and Alex Rodionov of the University of
Toronto, who programmed the high speed DLP projector to
visualize the output of our sensor.

Novel Hardware II UIST’14, October 5–8, 2014, Honolulu, HI, USA

363

REFERENCES

[1] R. Jota, A. Ng, P. Dietz and D. Wigdor, “How fast is
fast enough?: a study of the effects of latency in
direct-touch pointing tasks” in Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI '13), 2013.

[2] A. Ng, J. Lepinski, D. Wigdor, S. Sanders and P.
Dietz, “Designing for Low-Latency Direct-Touch
Input” in Proceedings of UIST 2012, Boston, MA,
2012.

[3] F. Bérard and R. Blanch, “Two touch system latency
estimators: high accuracy and low overhead” in
Proceedings of the 2013 ACM international
conference on Interactive tabletops and surfaces (ITS
'13), New York, NY, 2013.

[4] E. Johnson, “Touch display–a novel input/output
device for comuters” Electronic Letters, vol. 1, no. 8,
pp. 219-220, 1965.

[5] S. Lee, W. Buxton and K. Smith, “A Multi-Touch
Three Dimensional Touch-Sensitive Tablet” in ACM
CHI, 1985.

[6] J. Rekimoto, “SmartSkin: an infrastructure for
freehand manipulation on interactive surfaces” in
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI '02), 2002.

[7] W. Westerman, Hand Tracking, Finger Identification,
and Chrodic Manipulation on a Multi-Touch Surface,
University of Delaware, 1999.

[8] P. Dietz and D. Leigh, “DiamondTouch: a multi-user
touch technology” in Proceedings of the 14th annual
ACM symposium on User interface software and
technology (UIST '01), 2001.

[9] N. Mehta, Flexible Machine Interface, Toronto:
University of Toronto, 1982.

[10] J. Han, “Low-cost multi-touch sensing through
frustrated total internal reflection” in Proceedings of
the 18th annual ACM symposium on User interface
software and technology (UIST '05), 2005.

[11] P. McAvinney, The Sensor Frame - A Gesture-Based
Device for the Manipulation of Graphic Objects.,
Carnegie-Mellon University, 1985.

[12] J. Moeller and A. Kerne, “ZeroTouch: an optical
multi-touch and free-air interaction architecture” in
ACMCHI, 2012.

[13] CASPER: “Collaboration for Astronomy Signal
Processing and Electronics Research” [Online].
Available: https://casper.berkeley.edu/.

[14] A. Turing, “Computing Machinery and Intelligence”
in Mind, 59, 1950, pp. 433-460.

Novel Hardware II UIST’14, October 5–8, 2014, Honolulu, HI, USA

364

