
 

 

Designing for Low-Latency Direct-Touch Input 
 

Albert Ng1, Julian Lepinski2, Daniel Wigdor2, Steven Sanders3, Paul Dietz1 
1Microsoft Applied  

Sciences Group 
Redmond, WA, USA 

2Dept. of Computer Science 
University of Toronto 

Toronto, Canada 

3Sanders Capital 
New York, NY, USA 

 
{v-albeng | pdietz}@microsoft.com, {lepinski | dwigdor}@dgp.toronto.edu, steven.sanders@sanderscapital.com 

 

ABSTRACT 
Software designed for direct-touch interfaces often utilize a 
metaphor of direct physical manipulation of pseudo “real-
world” objects. However, current touch systems typically 
take 50-200ms to update the display in response to a physi-
cal touch action. Utilizing a high performance touch de-
monstrator, subjects were able to experience touch latencies 
ranging from current levels down to about 1ms. Our tests 
show that users greatly prefer lower latencies, and noticea-
ble improvement continued well below 10ms. This level of 
performance is difficult to achieve in commercial compu-
ting systems using current technologies. As an alternative, 
we propose a hybrid system that provides low-fidelity visu-
al feedback immediately, followed by high-fidelity visuals 
at standard levels of latency.  

ACM Classification: H.5.2 [Information interfaces and 
presentation]: User Interfaces. - Graphical user interfaces. 

General terms: Design, Human Factors  

Keywords: touch input, multi-touch, user input, latency 

INTRODUCTION 
Although long popular in automated teller machines and 
other kiosk applications, the last decade has seen the mass 
adoption of direct-touch interfaces. Earlier systems typical-
ly utilized soft buttons which the user pressed to interact 
with the system – hence the popularity of research dedicat-
ed to improving the precision of selection using a direct-
touch device, beginning with [22]. It wasn’t until the emer-
gence of multitouch that swiping, dragging, and pinching 
became standard interface elements. These operations are 
typically used in commercial offerings to mimic the manip-
ulation of actual physical objects, leveraging the principles 
of a “reality-based interface” to render their use more sim-
ple for novice users [12]. 

Unfortunately, the illusion of direct physical manipulation 
is limited by a number of factors. Among these is the inher-
ent delay between finger movement and the updating of the 
display. Direct-touch systems are particularly sensitive to 
this latency, as the unification of input and output makes 
latency more noticeable than with indirect touch.  

Using high-speed cameras, we informally tested a wide 
variety of iOS, Android, Windows, and Windows Phone 
devices doing basic OS navigation tasks, and found that 
this latency typically ranges between 50-200ms in current 
commercial devices. Past work has found that end users 
often describe devices with lower latency as feeling more 
“responsive” [2]. Utilizing a 1ms-latency touch input de-
vice, we expanded on this work by conducting a study de-
signed to measure human perception of drag latency in 
touch. We found that participants could reliably perceive 
touchscreen latency as low as 5-10ms. Thus, an order of 
magnitude improvement is required over current commer-
cial offerings before users may begin to perceive response 
to touch as instantaneous.  

Latency in a direct-touch device has many sources, but 
usually has three main components: 1) the physical sensor 
that captures touch events; 2) the software that processes 
touch events and generates output for the display; 3) the 
display itself. Reducing system latency in a direct-touch 
system requires addressing latency issues in all three of 
these components, and is thus a significant challenge. We 
have constructed a direct-touch device that achieves 1ms of 
latency by combining a low-latency touch sensor and pro-
jector with a dedicated processing system. In order to 
achieve extremely low latency, our system replaces tradi-
tional operating system software and computing hardware 
with a dedicated, custom-programmed.  

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. To copy otherwise, 
or republish, to post on servers or to redistribute to lists, requires prior 
specific permission and/or a fee. 
UIST ’12, October 7–10, 2012, Cambridge, Massachusetts, USA. 
Copyright 2012 ACM 978-1-4503-1580-7/12/10...$15.00. 
	

 
Figure 1: An “Accelerated Touch” visualization: the 
user receives both near-instantaneous visual feed-
back at low-fidelity (in red), as well as high-fidelity 
feedback with current-generation latency. 

453



 

 

As we will discuss, low latency input and output devices 
are feasible in the relatively short term. However, over-
coming latency due to software execution, while main-
taining the convenience of a multi-threaded OS, user in-
terface toolkit, and plethora of other utilities developers 
rely on, is a significantly greater challenge. 

In order to address this, we propose a system we have 
termed Accelerated Touch, shown in Figure 1. In an Ac-
celerated Touch system, we separate some of the basic 
visual responses to touch from the broader application 
logic. The result is a system with a nimble touch proces-
sor, capable of providing near-instantaneous visual feed-
back on user interaction, with a higher-fidelity visual lay-
er rendered at more traditional levels of latency. This is 
shown in Figure 1, with the Accelerated Touch visualiza-
tions shown in red.  

The contributions of this paper are fivefold. First, we de-
scribe the architectural problems in current systems with 
respect to latency, and describe possible avenues to re-
duce them. Next, we introduce our prototype device, 
which is capable of crude visual feedback at extremely 
low latency. Third, we present the results of a user study, 
which demonstrate that the lower latencies made possible 
by our prototype are perceptible to users, and therefore 
valuable. Fourth, we present a set of designs for a set of 
UI controls with bifurcated visual responses between low 
and high latency, in which users may receive immediate 
feedback appropriate to context, followed by a more com-
plete response guided by application logic. Finally, we 
describe options in software architecture to achieve the 
bifurcated feedback we have presented. First, we present a 
review of relevant related work. 

RELATED WORK 
Three areas of related work are illuminating. First, we 
discuss the impact of latency on user interfaces, with a 
focus on the oft-quoted “100ms” number. Next, we de-
scribe methods by which perceived latency (as at least 
somewhat distinct from actual latency) have been ad-
dressed. Finally, we describe various technologies used 
for touch input. 

Impact of Latency on UI 
The effects of latency on direct-manipulation based 
interaction have not been extensively studied. On latency 
and delay in general, early work by Card, Mackinlay and 
Robertson [4] is frequently cited, in which the authors 
claim that that the perception of animation requires a 
refresh rate no lower than 10Hz. This claim is based on 
Card, Moran and Newell's [5] work in estimating the 
cycle time of what they term to be the Perceptual 
Processor and is itself based on earlier work on visual 
perception [8, 11]. These figures appear to be frequently 
used to develop a 100ms rule, by which delays greater 
than 100ms are considered to be unacceptable [16].  

An early paper by Miller [18] estimates that 100ms delay 
is acceptable when using a light-pen to make slow, 
deliberate strokes, however this figure is presented 
without further reference and without explanation of how 
this value was determined. Miller does not present 
estimates of acceptable latency for faster light-pen 
strokes, nor any definition of ‘acceptable’. 

More recently, Anderson, Doherty, and Ganapathy [2] 
conducted a study to determine qualitative responses to 
touchscreen latency during various tasks, such as web 
browsing, with the aim of determining latencies users find 
to be "acceptable". The authors found that above a value 
of 580ms, users found the latency unacceptable, but noted 
that their experimental tasks were relatively brief 
(specifically: zooming, panning, and page-turning). We 
believe that these results are subjective, and are highly 
influenced by user expectations based on experience with 
current devices. As technology increases performance, 
user expectations will rise, along with clear improvement. 
Thus, we wished to move beyond what users currently 
find ‘acceptable’, and instead find the level of latency at 
which further improvement is no longer perceptible.  

A series of works by Pavlovych and colleagues has 
examined the role of latency on other types of input 
devices including the mouse [19,20,21]. We build on this 
work by examining its role in direct-touch input. 

Reducing perceived latency 
Significant efforts are expended in software and hardware 
engineering to reduce the latency of a given input device 
or system. A complete survey of best practices in this 
field is beyond the scope of this paper, though we will 
describe some of these in section 3. Also relevant is work 
in user interface design intended to reduce perceived 
latency – that is, delays perceived by the user, rather than 
actual delays. Seow [27] argues that the goal of an 
engineer (be it software or hardware) should be to reduce 
the perceived latency of a system, which may only be 
partially a function of the actual latency of that system. 
Indeed, researchers have found that adding differentiated 
visual responses to touch input makes a system appear to 
have improved performance, even when the actual 
performance is unchanged (e.g.: [31]). While we value 
this approach, the focus of our efforts has been in 
understanding the value of reducing actual latency. 

Touch Input Technologies 
Direct touch input can be achieved using a variety of 
technologies, including resistive [22, 23], direct 
illumination [30], frustrated total-internal reflection [9], 
diffuse illumination [24], projective capacitive [3], and 
capacitive coupling [7]. One property these technologies 
share is that they contribute to the latency between user 
action and the system’s response. The scale of this 
contribution varies across technology and 
implementation. Notable, however, is that in none of the 
papers cited above is there a measurement of the latency 
of the device being described.  

454



 

 

LATENCY IN TOUCH 
We define touch-to-display latency as the time delay 
between a touch action (such as the user moving a finger) 
and the resulting display change [26]. After testing 
numerous commercial devices using the method described 
in the Appendix, we found that, on modern touch systems, 
this is typically between 50 and 200ms. For example, we 
used a high-speed camera to examine this delay on an 
iPad. For this device, there is typically about 75ms of lag 
between the motion of the finger and the updating of the 
display. This number varies depending on various factors, 
including when in the scan and video cycles the user 
made the movement, the particular application, etc. High 
latency is particularly problematic on larger displays, such 
as the iPad, where users are more likely to perform 
gestures more quickly than with smaller, mobile-phone 
sized displays. 

Direct-touch interfaces are particularly challenging 
because they make it easy for users to perceive latency. 
With a mouse or trackpad, a user compares his or her 
motion to visual perception. Since motor reflexes have 
10s to 100s of milliseconds of delay themselves, it is 
difficult to make the comparison accurately. In contrast, 
direct manipulation interfaces make latency apparent 
within a single sensing modality – sight. If a dragged 
graphical object lags behind a moving finger, the user 
sees the finger and the misaligned object at the same time, 
independent of any delay in visual processing. This can 
even be seen in still photographs, such as in Figure 4. One 
might think that because the finger is moving, this 
misalignment will be difficult to notice. However, this is 
typically not the case. The human eye can easily track a 
finger moving at moderate speed, and thus the image of 
the finger and the misaligned graphic can be fairly stable 
on the retina. 

The amount of misalignment between the finger and the 
tracking graphic can be considerable. For a finger moving 
at the moderately fast rate of 1 meter/second, a 100ms 
latency will cause the graphic to lag behind the finger by 
100mm, or about 4 inches. At 10ms latency, this reduces 
to 10mm – about the width of a small finger. This is much 
better, but still quite noticeable. In designing our test 
system, we presumed that we would need to get down to 
about 1/10th of a finger width for the misalignment to be 
negligible. Thus, our goal was to produce a test system 
with a touch-to-display latency of 1ms. 

There are three major components that contribute to 
latency in a touch system: 1) the touch sensor itself, 2) 
processing by the system software, UI toolkits, and 
ultimately the application, and 3) the display. Reducing 
the latency of direct touch systems requires 
understanding, and addressing, the latency introduced by 
each of these components.  

Touch Sensor 
Most modern multitouch systems use mutual capacitance 
sensors that measure the capacitive coupling from each row 
to each column on a 5-6mm grid. The change in this cou-
pling due to the presence of a finger is very small, typically 
less than one picofarad. This is a very challenging meas-
urement to make, particularly in the presence of extraneous 
electric fields such as those produced by an LCD display, 
backlight, etc. Allowing enough time for each measurement 
to average away the noise is critical.  

Most current touch sensors run at a 60Hz scan rate. This 
means that each grid point is scanned every ~17ms. Typi-
cally, this raw data is then processed into touch points by 
an embedded touch controller, before being sent out over 
the communications link. These steps add further delay. 
Additionally, some touch controllers run at a slower scan 
rate until they detect a touch event in order to save power. 
This behavior adds additional delay at first contact, but 
does not impact tracking performance. 

It would be fairly straightforward to decrease the latency of 
current touch technologies – particularly vision-based tech-
niques, given that high speed cameras are nearly commodi-
tized. However, it would involve running more hardware in 
parallel, increasing cost and power dramatically. To ad-
dress this, low latency touch sensors will need to use region 
of interest, tracking, and related techniques to limit the 
number of points scanned.  

It is worth noting that latency specifications can be ex-
tremely misleading. It is common in the industry to refer to 
frame rate rather than latency. They are not the same thing. 
If multiple frames are buffered, the latency can be quite 
high, even with a fast frame rate. Further, it is not uncom-
mon for commercial devices to be advertised with “typical” 
delays, with no mention of worst case. Our research on this 
issue has been frustrated by the fact that the industry has 
not adopted a full disclosure policy that would require 
specifying the range of latencies and their distribution, 
hence the need to perform our own measurements. 

Processing 
Between the sensor and the display there is an arduous path 
that involves communications, the operating system, UI 
toolkits, the application layer, and ultimately, the graphics 
controller. Each of these adds latency. 

The latency introduced by the operating system is highly 
variable. Windows, iOS, OSX, Android, etc. are not real 
time operating systems. Because of this, there is no guaran-
tee a response will happen within a certain time period. If 
the processor is heavily loaded, it is possible for latency to 
increase dramatically. Some operations are handled at a 
very low level in the software stack, and have high priority. 
For example, the mouse pointer is typically highly opti-
mized, so that even under heavy load, the perceived latency 
is relatively low. In contrast, an operation such as resizing a 
photo with two fingers requires constant rescaling of the 
image at the application level.  

455



 

 

While application developers clearly have an incentive to 
make their programs seem responsive, there are in fact few 
constraints on the amount of latency they may introduce. 
UI threads typically dispatch input events one at a time, 
requiring that the application finish dealing with one input 
event before another can be attended to. While the input 
queue ensures that all input is addressed, this one-event-at-
a-time model provides ample opportunity for application 
developers to introduce significant latency. Unfortunately, 
developers quickly see diminishing returns on their own 
efforts to increase application performance given the limits 
dictated by other latencies in the system. 

Display 
The display system (including the graphics system as well 
as the display itself) is another major contributor to latency. 
Again, an obsession with frame rates obscures the actual 
latency through the system. For example, a 60Hz monitor 
may include one or more frames of buffer in order to allow 
for sophisticated image processing effects. Some display 
devices, such as projectors, include double-buffering in the 
electronics, effectively doubling the display latency.   

The desire for 3D televisions and reduced motion artifacts 
is driving the development of faster LCD’s. 240Hz displays 
are now commercially available. Unfortunately, the physics 
of the liquid crystals themselves appear to make perfor-
mance beyond 480Hz unlikely. In contrast, Plasma and 
OLED technologies can run at higher speeds, but face sig-
nificant commercialization challenges.  

In our work, we have developed a high-performance touch 
demonstration system. Through various engineering efforts, 
we have been able to reduce the latency in each of the input 
device, processing of touches, and the display, in order to 
enable our simple applications to run with a latency of 
~1ms. We now describe those efforts. 

A HIGH-PERFORMANCE TOUCH TEST SYSTEM 
Our ultimate goal is to understand how user perception of a 
touch system is impacted by touch-to-display latency, and 
to begin the work of engineering systems which are able to 
produce appropriately fast responses. To do this, we needed 
a system capable of generating a wide range of latencies - 
particularly ones much shorter than those provided by cur-
rent systems. Unfortunately, no such device is commercial-
ly available. Thus, we needed to build our own test system.  

The requirements for our test system were very demanding. 
Presuming a finger moving at 1m/s, we wanted the maxi-
mum slippage of dragged-UI elements to be 1mm. This 
implies a latency of 1ms. To reach this level of perfor-
mance, our system would require very high speed sensing 
and display – far faster than typical commercial systems. In 
addition, any processing would need to be extremely fast. 
The following sections describe the components of our 
implementation of such a high-performance touch system.  
Figure 2 shows a system-level block diagram of the system.  

Touch Sensor 
We utilized a proprietary multi-touch resistive touch sensor 
with an active area of 24 cm x 16 cm, with custom elec-
tronics that allows very high-speed operation. The delay 
through this sensor is slightly less than 1ms, with no theo-
retical upper bound on detected movement speed. Touch 
data is transmitted serially over an optical link. 

Projector 
For the display, we chose the DLP Discovery 4100 kit 
based on Texas Instruments’ Digital Light Processing tech-
nology [28]. The system utilizes front-projection onto the 
touch sensor, eliminating parallax error that might disturb a 
user’s perception of finger and image alignment. A DLP 
projector uses a Digital Micromirror Device (DMD), a ma-
trix of mirrors which turn pixels on or off at very high 
speed. Typically, the high speed of the mirrors is used to 
change the percentage time on vs. off to create continuous 
colored images. If one gives up this capability and only 
allows simple binary images, these can be produced at an 
extraordinary rate. Our projector development system dis-
plays 32,000 binary frames/second at 1024x768 resolution 
with latency under 40 μs. To achieve this speed, the video 
data is streamed to the DMD at 25.6 Gbps. 

 
Figure 2: System block diagram of the high-
performance touch test system with estimated la-
tency contributions of the individual components. 

 

 
Figure 3: Photograph of device, with the control 
computer at right. The control computer is used on-
ly to set behaviour parameters for the device. 

456



 

 

FPGA Processing 
To achieve minimal latency, all touch processing is per-
formed on a dedicated FPGA – there is no PC or OS be-
tween the touch input and the display output. We used the 
DLP kit’s onboard XC5VLX50 application FPGA for pro-
cessing the touch data and rendering the video output. To 
simplify user testing, a USB serial connection to the FPGA 
allows parameters to be changed dynamically. Latency can 
be adjusted from 1ms to several hundred ms with 1ms reso-
lution, and different testing modes can be activated. This 
port also allows touch data to be collected for analysis. 
Figure 2 shows a block diagram of the FPGA design. 

To receive touch data from the sensor, the system com-
municates through a custom high-speed UART. To mini-
mize the latency, we use a baud rate of 2 Mbps, the highest 
baud rate we can use without losing signal integrity due to 
high frequency noise across the communication channel.  

The individual bytes of compressed touch data are then 
processed by a touch detection finite state machine. This 
FSM simultaneously decodes the data and performs a cen-
ter-of-mass blob-detection algorithm to identify the coordi-
nates of the touches. The system is pipelined such that each 
iteration of the FSM operates on the last received byte such 
that no buffering of the touch data occurs. 

The touch coordinates are then sent to a 10-stage variable 
delay block. Each delay stage is a simple FSM with a coun-
ter and takes a control signal that indicates the number of 
clock cycles to delay the touch coordinate, allowing us to 
test various levels of latency. The delay block latches the 
touch sample at the start of the iteration and waits for the 
appropriate number of cycles before sending the sample 
and latching the next. The delay block therefore lowers the 
sample rate by a factor of the delay count. To keep the 
sample rate at a reasonable level, 10 delay stages are used, 
so that, for example, to achieve 100ms of latency, the block 
waits 10ms between samples for a sample rate of 100Hz. 

To run basic applications, we chose to incorporate a Mi-
croBlaze soft processor to render the display. Our first pro-
totype originally used a hardcoded control FSM in place of 
the MicroBlaze for absolute maximum performance, but 
due to the inflexibility of a hardcoded FSM, we decided to 
use a soft processor instead. The MicroBlaze is a 32-bit 
Harvard architecture RISC processor optimized to be syn-
thesized in Xilinx FPGAs [33]. 

The MicroBlaze soft processor instantiation allows us to 
select only the cores, peripherals, and memory structures 
required for our application. For our system, in addition to 
the base MicroBlaze configuration, we include an interrupt 
controller, GPIOs for the touch data, a GPIO to set the var-
iable latency, a BRAM memory controller for the image 
buffer, and a UART unit to communicate with a PC. The 
MicroBlaze is clocked at 100 MHz. 

The MicroBlaze uses an interrupt system to detect valid 
touch coordinates. A touch ready interrupt event is generat-
ed when valid touch data arrives on the GPIOs from the 
delay block, and the corresponding image is written to the 
image buffer. Because of the non-uniform nature of an in-
terrupt-based system, the exact latency cannot be comput-
ed, but it is insignificant in comparison to the 1ms latency 
due to the input device. 

The image buffer is synthesized in the on-chip BRAM 
blocks. These blocks provide a dual-port high-speed con-
figurable memory buffer with enough bandwidth to support 
our high frame-rate display. The image buffer is clocked at 
200 MHz with a bus width of 128 bits for a total bandwidth 
of 25.6 Gbps, as needed by the DLP.  

Finally, the DMD controller continuously reads out frames 
from the image buffer and generates the signals with ap-
propriate timing to control the DMD. This controller can be 
changed to vary the frame rate in future testing. 

Tools 
The FPGA design was done using the Xilinx ISE Design 
Suite 13.2. The MicroBlaze was instantiated and config-
ured using the Xilinx Platform Studio (XPS), and the Mi-
croBlaze was programmed in the C language through the 
Xilinx Embedded Development Kit (EDK). The image 
buffer BRAM was instantiated and configured using the 
Xilinx Core Generator. All VHDL simulations were done 
using the Xilinx ISim simulator. Synthesis was done using 
the Xilinx Synthesis Tool (XST). 

Having developed a device capable of extremely low laten-
cy, we wished to understand precisely what levels of laten-
cy would achieve perceptibly improved responses. Thus, 
we conducted a study to measure the latencies which users 
are able to perceive while performing drag input. 

  
Figure 4: Our high-performance touch device, capable of sensing and responding to input at 1 kHz with only 1 frame 
of latency. Demonstrating dragging an on-screen object with the same velocity, with latency (from left to right) of 
100ms, 50ms, 10ms, and 1ms. 

457



 

 

PERCEPTION OF LATENCY IN DRAGGING 
While earlier work has demonstrated that users are able to 
perceive latency down to 100ms, our own use of our proto-
type device indicated that latency was apparent at far lower 
levels – as shown in Figure 4. In order to guide our efforts 
in reducing latency, we wished to understand at precisely 
what latency value users would no longer notice a differ-
ence in performance when performing drags. Thus, we 
conducted a formal experiment in which we modulated the 
latency of the system, and measured participants’ ability to 
perceive the differences in performance. 

Just Noticeable Difference 
We wished to determine the precise level of performance 
that users are able to perceive when performing common 
tasks on a touch screen interface. To that end, we conduct-
ed an experiment to determine the just-noticeable differ-
ence (JND) of various performance levels. The JND is de-
fined as the threshold level at which a participant is able to 
discriminate between two unequal stimuli – one consistent-
ly presented at the same level, termed the reference, and 
one whose value is changed dynamically throughout the 
experiment, termed the probe [15]. A commonly accepted 
value for the JND at some arbitrary reference value is a 
probe at which a participant can correctly identify the ref-
erence 75% of the time [15]. A probe value that cannot be 
distinguished from the reference with this level of accuracy 
is considered ‘not noticeably different’ from the reference. 

We conducted a within-subjects experiment to determine 
the JND level of the probe latency when compared to our 
maximum performance of 1ms of latency, which served as 
the reference. While such a determination does not provide 
an absolute value for the maximum perceptible perfor-
mance, it does serve as our ‘best case’ floor condition 
against which we are able to measure other levels of laten-
cy. Our hypothesis was: 

H1: Participants will be able to discern latency values 
that are significantly lower (<20ms) than current-
generation hardware provides (~50-200ms). 

Apparatus 
Our experimental setup, shown in Figure 3, incorporated 
the previously described system, controlled by a laptop via 
a USB serial connection. The laptop runs custom software 
written for the purpose of generating the latency value 
staircases in real time; each user response is entered and 
logged on the laptop, and used to generate the following 
trial’s latency level. The experimental task is shown in Fig-
ure 4. 

Participants 
Ten right-handed participants (3 female) were recruited 
from the local community. Ages ranged between 24 and 40 
(mean 27.80, standard deviation 4.73). All participants had 
prior experience with touchscreen devices, and all partici-
pants owned one or more touch devices (such as an iOS- or 
Android-based phone or tablet). Participants were paid $20 
for their participation. 

Procedure 
Participants were repeatedly presented with pairs of latency 
conditions: the reference value (1ms) and the probe (be-
tween 1 and 65ms of latency). Participants dragged their 
finger from left to right, then right to left on the 
touchscreen display. While any dragging task would have 
been suitable, left/right movements reduce occlusion in 
high-latency cases. Participants were asked to move in both 
directions to ensure they did not ‘race through’ the study 
Beneath the user’s contact point, the system rendered a 
solid white 2cm × 2cm square. The speed of movement was 
left to be decided by the participants. 

The order of the conditions was randomized for each pair. 
The study was designed as a two-alternative forced-choice 
experiment; participants were instructed to choose, within 
each trial, which case was the reference (1ms) value and 
were not permitted to make a “don’t know” or “unsure” 
selection [25]. After each pair, participants informed the 
experimenter which of the two was “faster”. 

Design 
In order for each trial to converge at our desired JND level 
of 75%, the amount of added latency was controlled ac-
cording to an adaptive staircase algorithm, which is a more 
recent and now broadly adopted approach than previous 
staircase and modified staircase algorithms [15] Each cor-
rect identification of the reference value caused a decrease 
in the amount of latency in the probe, while each incorrect 
response caused the probe’s latency to increase. In order to 
reach the 75 % confidence level, increases and decreases 
followed the simple weighted up-down method described 
by Kaernbach, wherein increases had a three-fold multiplier 
applied to the base step size, and decreases were the base 
step size (initially 8ms) [13]. When a participant responded 
incorrectly after a correct response, or correctly after an 
incorrect response, this was termed a reversal as it caused 
the direction of the staircase (increasing or decreasing) to 
reverse. The step size, initially 8ms, was halved at each 
reversal, to a minimum step size of 1ms. This continued 
until a total of 10 reversals occurred, resulting in a conver-
gence at 75% correctness.  

Each participant completed eight staircase ‘runs’.  Four of 
these started at the minimum probe latency (1ms) and four 
at the maximum (65ms). The higher starting value of the 
staircase was chosen because it roughly coincides with 
commercial offerings, and because pilot testing made it 
clear that this value would be differentiated from the 1ms 
reference with near 100% accuracy, avoiding ceiling effects. 

Staircases were run two at a time in interleaved pairs to 
prevent response biases that would otherwise be caused by 
the participants’ ability to track their progress between suc-
cessive stimuli [15].  Staircase conditions for each of these 
pairs were selected at random without replacement from 8 
possibilities (2 starting levels × 4 repetitions).  The entire 
experiment, including breaks between staircases, was com-
pleted by each participant within a single 1-hour session. 

458



 

 

Results 
Our study was designed to find the just-noticeable differ-
ence (JND) level for latency values greater than 1ms. This 
JND level is commonly agreed to be the level where the 
participant is able to correctly identify the reference 75% of 
the time. Participant JND levels ranged from 2.38ms to 
11.36ms, with a mean JND across all participants of 
6.04ms (standard deviation 4.33ms).  JND levels did not 
vary significantly across the 8 runs of the staircase for each 
participant. Results for each participant appear in Figure 5. 

 
Figure 5: Mean JND by participant. Bars show std-dev. 

Discussion 
Our results have confirmed our hypothesis. Participants 
were able to discern differences in latency far below the 
threshold of current consumer devices [H1] (50-200ms). It 
should be noted that a baseline of 1ms was a limitation of 
our experimental hardware, and it is possible that our re-
sults are therefore exhibiting the effects of this technical 
floor; further experimentation is necessary to determine if 
participants’ JND values would be even smaller than those 
shown here, given a faster reference value. 

We should also note that our participants were likely often 
determining latency by estimating the distance between the 
onscreen object and their finger as it was moved around the 
touchscreen; this is an artifact of an input primitives used in 
modern UIs (specifically, dragging). We have no doubt that 
testing a different input primitive (tapping, for example) 
would exhibit different perceptions of latency. 

Our results confirm that an order-of magnitude improve-
ment in latency would be noticed and appreciated by users 
of touch devices. Thus, we set-out to design a software 
interface which would enable application developers to 
continue to use toolkit-based application design processes, 
but enable those toolkits to provide feedback at extremely 
low latencies, given the presence of a low-latency system. 

A TOUCH ACCELERATION TOOLKIT 
As we have discussed, input and display devices can con-
ceivably be made in the relatively near term which could 
enable extremely low-latency interaction. The apparent 
remaining bottleneck, therefore, is the creation of soft-
ware that can be executed with sufficiently low latency. 

An obvious first step would be to hardware-accelerate 
application software. While this may be technically feasi-
ble, it would require application software be written in a 
fundamentally new way, foregoing long-standing toolkits 
and development practices. 

We propose a middle-ground, which builds on the model-
view-controller model of UI development, upon which 
many modern UI toolkits are based [14]. The MVC holds 
that application logic can be separated from the visual 
representation of the application. In our modified version 
of MVC, a second, overlaid view is provided for the ap-
plication. In particular, touch input receives an immediate 
response from the UI controls, which is based in part on 
the state of the application at the time the touch is made. 
Our goal is not to reduce overall system latency, but ra-
ther to provide immediate responses that are nonetheless 
contextually linked to the underlying application.  

We aim to extend previous work on application-
independent visual responses to touch [31]. While a 
straightforward port of Ripples might be feasible, a limi-
tation of the visualizations shown in that work is that they 
are completely separate from even the visual elements of 
the UI, adding visual complexity [32]. Instead, we aimed 
to more fully integrate a set of visual responses into the 
UI elements themselves, so as to reduce visual complexi-
ty. Thus, unlike Ripples, where the particular visuals 
shown provide a de facto “mouse pointer” for touch, our 
goal is to integrate high performance responses into the 
controls themselves, providing a more unified visualiza-
tion. We thus designed Accelerated Touch interactions, 
wherein the traditional direct-touch software runs as it 
would normally, in a high-latency visual layer, while an 
additional visual layer contains immediate visual feed-
back, customized for the UI element at a very low latency. 

In our prototype, these two layers are combined by super-
imposing two projected images – one from the low-
latency touch device, and a second from a traditional pro-
jector connected to a desktop computer running custom 
touch software, receiving input from the low-latency sub-
system. A commercial implementation would doubtless 
be architected such that the low-latency layer is generated 
in hardware, operating directly on touch sensor data, with 
a high bandwidth link to the display hardware. Our two-
display solution is meant only to serve as a demonstrator. 

To facilitate future implementations, we now describe our 
Accelerated Touch user interface designs. We begin by 
first describing the design constraints which guided our 
design process, and then present our final designs. We 
then describe the architecture of our implementation. 

459



 

 

User Interface 
Design Constraints 
In designing a user interface for the low-latency subsystem, 
we considered a number of constraints: 

Information: The low-latency layer has limited information 
about the current state of the application software; in par-
ticular, it is limited to knowledge of the state of the applica-
tion prior to the beginning of a touch event. This is because 
any closed loop between the high and low-latency subsys-
tems would necessarily add lag. 

Performance: The response of the low-latency layer must 
be generated very quickly. Even with hardware accelera-
tion, the design of visual responses must be carefully per-
formance-driven.  

Fidelity: The low-latency layer is restricted to generating 
simple visualizations, to the degree that they can be cus-
tomized at the time of development of the low-latency vis-
ual responses. In the case of our prototype, we had the ad-
ditional constraint that the visuals could be only mono-
chromatic and limited visual primitives. Constraints of this 
type can be introduced by the acceleration hardware, or by 
the display hardware. 

Non-Interference: Given that some of the application’s 
response will be generated in the low-latency, hardware 
accelerated layer, and some in the high-latency software 
layer, a key consideration is how the two will be blended to 
provide a ‘seamless’ response to the user’s input. Low-
latency responses must not interfere with any possible ap-
plication response, which will necessarily occur later. 

Design 
We conducted a design process to create a set of UI con-
trols with differentiated low and high latency visual re-
sponses to touch. To begin, we sought to find a metaphor 
which would enable a seamless transition between the two 
layers of response. These visualizations included such in-
formation as object position and state. Our designs were 
culled based on feasibility under the above constraints. 

Our final design was based on a heads-up display (HUD) 
metaphor, similar to the visualizations used in military air-
craft. The HUD was suitable, since traditional HUDs are 
geometrically simple, and thus was easy to implement such 
at an authentic fidelity. The HUD, notably, is another ex-
ample of two visual layers being combined, though in the 
case of many HUDs, a computerized display is superim-
posed on video or the real world itself [10]. Accordingly, 
they are designed to be non-interfering. 

Based on the HUD metaphor, we developed a set of touch-
event and UI element-specific low-latency layer visualiza-
tions for a set of UI elements found in many direct-touch 
systems. These 3 elements are both common and repre-
sentative; their interactions (taps, drags, two-finger pinch-
ing) cover the majority of the interaction space used in cur-
rent direct-touch devices. The low-latency responses we 
developed are described in Table 1, and they are shown in 
Figure 6 and in our video figure. 

ELEMENT  TOUCH DOWN TOUCH MOVE TOUCH UP 

Button Outline (none) If within bounds, 2nd 
outline, else none. 

Draggable / 
Resizeable  

Bounds  
outlined 

Outline changes 
/ moves 

Outline fades when 
high-latency layer 
catches up 

Scrollable 
View 

List item  
outlined 

List edges high-
light to scroll 
distance. 

Edge highlights fade 
as high-latency layer 
catches up  

Table 1: Accelerated visuals for each element and 
touch event, which compliment standard high-
latency responses to touch input. 

These 3 elements represent broad coverage of standard UI 
toolkits for touch input. Most higher-order UI elements are 
composed of these simpler elements (eg: radio buttons and 
checkboxes are both ‘buttons’, a scrollbar is a “draggable/ 
resizable” with constrained translation and rotation).  

Our Accelerated Touch system depends on the marriage of 
visuals operating at two notably different latency levels; 
this latency difference has been incorporated into the de-
sign of our low-latency visualizations. Users are informed 
of the state of both systems, with a coherent synchroniza-
tion as the visual layers come into alignment.  

 
Figure 6: Our element types: a. buttons, b. draggable / 
resizable elements, c. scrolling viewports.  

460



 

 

Architecture 
We envision that the application developer utilizing a 
toolkit such as the one we have described will build their 
application through the normal process of assembling GUI 
controls. Upon execution, the UI elements would bifurcate 
their visualizations, with high- and low-latency visualiza-
tions rendered and overlaid on a single display. Information 
flow through our system is as shown in Figure 7. 

As we have described, this bifurcation creates a fundamen-
tal communication problem where any parameterization of 
visualizations provided by the low-latency subsystem re-
quired by application logic must be defined before the user 
begins to give input. Any visualization which requires pro-
cessing by the application will introduce a dependency of 
the low-latency system upon the high-latency system, and 
will therefore introduce lag back into the system. 

Therefore it was critical for us to build UI element logic 
into the low-latency subsystem. Between user touches, the 
application, which is executing in the high-latency subsys-
tem, has the opportunity to provide parameters for the low-
latency subsystem’s model of the UI elements. As we have 
described, our approach was to extend the MVC model of 
UI software design, by providing a separate controller re-
sponsible for low-latency feedback. In our software design, 
the following can be specified for each control: 

 Element type (button, draggable object, scrollable list) 

 Bounding rectangle dimensions (x, y, width and height) 

 Conditional: additional primitive information (for ex-
ample: size of list items, in the case of a scrollable list) 

Logic for a given element-type’s response to touch input is 
stored in the low-latency subsystem. In future implementa-
tions further parameterization of the low-latency subsys-
tem’s responses to user input could be communicated in the 
same manner, allowing a greater degree of customization. 

In our implementation, sensor data is processed on the 
FPGA to generate events, which are then separately dis-
tributed to the low-latency and high-latency subsystems, as 
shown in (Figure 7). The low- and high-latency subsys-
tems’ response to user input is therefore independent but 
coordinated. In this implementation, the high-latency sub-
system acts as the ‘master’, setting state of the low-latency 
subsystem between user touches. Future implementations 
might change this relationship to increase synchronization 
between the two subsystems, or offload more processing to 
the low-latency subsystem. 

Synchronization 
Communication between the high-latency and low-latency 
layers is of critical importance. Three issues must be con-
sidered in determining how the high- and low-latency sub-
systems remain synchronized. 

Latency differences: Our low-latency visualizations require 
information about the latency difference between the high- 
and low-latency visual layers in order to synchronize visu-
alizations. In our system these latency values are static, and 
thus preprogrammed into the FPGA. In implementations 
where latency levels vary in either subsystem, it may be 
advantageous to fix the latency level at an always-
achievable constant rather than having a dynamic value that 
may become unsynchronized. 

Hit testing: Hit testing decisions are conditional on addi-
tional data regarding the visual hierarchy and properties of 
visible UI elements. Our implementation resolved this con-
sideration by disallowing overlapping bounding rectangles, 
requiring a flat, ‘hit test friendly’ map of the UI. Other im-
plementations may instead provide the necessary infor-
mation (object state, z-order, listeners) to the low-latency 
subsystem and have both subsystems conduct hit testing in 
parallel, or conduct it solely in the low-latency subsystem, 
providing the results to the high-latency subsystem. 

Conditional responses: Many interface visualizations are 
conditional not only on immediate user input, but on fur-
ther decision-making logic defined in the application logic. 
The degree to and method by which application logic might 
be migrated to the low-latency subsystem is a topic requir-
ing further research. Two illustrative examples of condi-
tional response logic are as follows:  

Consider a credit-card purchase submission button, which 
is programmed to be disabled (to prevent double-billing) 
when pressed, but only upon validation of the data entered 
into the form. In such a case, the behavior of the button is 
dependent not only on an immediate user interaction, but is 
further conditional on additional information.  

Consider also linked visualizations, such as the one shown 
in Figure 8. In this case, feedback is provided to the user 
not only by the UI element they are manipulating, but also 
by a second UI element. 

 
Figure 7: The Accelerated Touch architecture 

 

Figure 8: The Windows 7 volume control. When 
dragging the slider, a tooltip appears showing a nu-
meric representation of the current setting. 

 

 

Touch 
Sensor

Touch 
Processor

Low-Latency 
Subsystem

High-Latency 
Subsystem

DisplayFrames
State   Info.

461



 

 

These relatively straightforward examples could easily be 
programmed directly into the low-latency subsystem, even 
in our relatively primitive FPGA-based demonstrator sys-
tem. However, how these might be described in general 
terms that do not require application-specific development 
within the low-latency subsystem is an open question, and 
one that is critical to answer to allow developers to contin-
ue to use traditional development methods when creating 
software in an Accelerated Touch-like toolkit. 

CONCLUSION & FUTURE WORK 
In this paper, we have described sources of latency, and 
demonstrated how several of these can be eliminated in 
building a demonstrator system capable of 1ms touch laten-
cy. Further, we have described the results of tests which 
showed that users were able to perceive order-of magnitude 
improvements in latency over current-generation hardware. 
Our results suggest that performance beyond 1ms may still 
yield improvement that is perceptible to users.  

We have constructed a prototype Accelerated Touch sys-
tem, wherein a traditional direct-touch layer is paired with a 
low-latency layer that displays nearly immediate visual 
feedback on user interaction, independent of application 
logic, but visually tied to the underlying UI widget. We 
have further described the design of this visual language to 
satisfy the various constraints of a dedicated low-latency 
touch processor, and we have described a potential archi-
tecture for a direct-touch system that pairs Accelerated 
Touch with more traditional touch interaction. 

A common complaint that we heard from people who used 
our system extensively was that it “broke” them – that they 
now find the latency of current generation devices com-
pletely unacceptable. The implication is that improving 
latency might be an effective competitive strategy for de-
vice vendors. It is our hope that this paper will spark inno-
vation in the design of hardware and software capable of 
lower latency of response to user input.  

We see a wealth of future work in further investigating the 
limits of human perception of touchscreen computer sys-
tems, and better understanding the effect of performance 
parameters such as latency on the usage of touchscreens. 
For example, are there performance benefits for input under 
reduced latency? Further, we have conflated latency and 
frame rate, future devices may decouple these two parame-
ters, and could optimize one or the other; further investiga-
tion is needed into the effects of such a change. 

ACKNOWLEDGEMENTS 
We thank our experimental participants, the UIST review-
ers for their helpful comments, our UIST AC for meticu-
lous feedback, and Ricardo Jota for assistance with the vid-
eo. We also thank the members of the Dynamic Graphics 
Project at the University of Toronto, and the Applied Sci-
ences group at Microsoft for valuable discussions. 

APPENDIX: MEASURING LATENCY 
We use a simple technique for measuring the touch-to-
display latency. The device is placed in a mode where a 
graphic is meant to follow a touch point. (eg: inking, trans-
lating an icon). A ruler is placed on top of the device. A 
finger is then dragged across the screen along the ruler edge 
at as constant a rate as possible. A high speed camera of 
known frame rate captures the finger motion as well as the 
resulting graphical response. By examining individual 
frames in the video, we can calculate the speed of the finger 
(distance travelled between successive frames x frame 
rate). The amount of separation between the finger and the 
following graphic can be directly observed. The latency is 
the separation distance / the finger speed. We take two 
measurements: worst case latency, and best case latency.  

We used an inexpensive consumer camera – a Casio EX-
FH100 High Speed Exilim – to record 240 fps video at 
448x336. This is significantly faster than most display sys-
tems, thus the graphic can be seen to jump in discrete in-
crements, while the finger moves between every frame. In 
addition to this type of variation, latency can also vary with 
different locations on the screen, OS load, etc.  

Figure 9 shows two images taken 12 frames apart from our 
testing. In the example shown in the figure, the fingers have 
moved 1.8cm over 12 frames (0.05 seconds, 36 cm/s). The 
lag distance is 4.2cm, thus the worst-case latency is com-
puted as 116.7 ms.  

 

 
Figure 9. Images of Autodesk Sketchbook Pro run-
ning on an iPad 3.  

462



 

 

Best-case latency is computed by finding the frame show-
ing the shortest lag distance (among the 10 frames between 
the samples shown), and assuming the same speed of finger 
movement. In the case of our example, the best-case lag 
distance was 2.7cm (shown in Figure 10), thus yielding a 
best-case lag of 75ms.  

 
Figure 10. Shortest lag distance among the frames 
of video between the ones shown in Figure 9. 

REFERENCES 
1. Accot, J., and Zhai, S. 1997. Beyond Fitts law: models 

for trajectory based HCI tasks. Proceedings of ACM 
CHI'97, 295-302. 

2. Anderson, G., Doherty, R., and Ganapathy, S. 2011. User 
Perception of Touch Screen Latency. Design, User Expe-
rience, and Usability. Theory, Methods, Tools, and Prac-
tice. 195-202. 

3. Boie, R.A. 1984. Capacitive Impedance Readout Tactile 
Image Sensor. Proceedings of the 1984 IEEE Interna-
tional Conference on Robotics and Automation, 370-378. 

4. Card, S. K., Mackinlay, J. D., and Robertson, G. G. 1991. 
The Information Visualizer: An Information Workspace. 
Proceedings of (CHI '91), 181-188. 

5. Card, S.K., Moran, T.P., and Newell, A. 1983. The Psy-
chology of Human-Computer Interaction. Erlbaum, 
Hillsdale, NJ, USA. 

6. Cornsweet, TN. 1962. The staircase-method in psycho-
physics, American Journal of Psychology, 75, 485-491. 

7. Dietz, P., and Leigh, D. 2001. DiamondTouch: multi-user 
touch technology. Proceedings of the UIST’ 01, 219-226. 

8. Ganz, L. 1975. Temporal factors in visual perception. In 
E. C. Carterette and M. P. Friedman, eds. Handbook of 
Perception, Vol. V, Seeing. New York: Academic Press  

9. Han, J. 2005. Low-cost multi-touch sensing through frus-
trated total internal reflection. Proceedings of UIST ‘05, 
115-118. 

10. Harrison, B.L. and Ishii, H. and Vicente, K.J. and Bux-
ton, W.A.S. 1995. Transparent layered user interfaces: 
An evaluation of a display design to enhance focused and 
divided attention. Proceedings of CHI ’95, 317-324. 

11. Harter, M. R. 1967. Excitability and cortical scanning: A 
review of two hypotheses of central intermittency in per-
ception. Psychological Bulletin 68, 47-58. 

12. Jacob, R. J. K., Girouard, A., Hirshfield, L. M., Horn, M. 
S., Shaer, O., Solovey, E. T., and Zigelbaum. J. 2008. 
Reality-based interaction: a framework for post-WIMP 
interfaces. Proceedings of CHI '08, 201-210. 

13. Kaernbach, C. 1991. Simple adaptive testing with the 
weighted up-down method, Perception & Psychophysics 
49, 227-229. 

14. Krasner, G., Pope, S. 1988. A cookbook for using the 
model-view controller user interface paradigm in Small-
talk-80. J. Object Oriented Program. 1, 3, 26-49. 

15. Levitt, H. 1971. Transformed up-down methods in psy-
choacoustics. Journal of the Acoustical Society of Ameri-
ca, 49(2): 467–477.  

16. MacKenzie, I.S., and Ware, C. (1993). Lag as a determi-
nant of human performance in interactive systems. In 
Proceedings of CHI '93, 488-493. 

17. Microsoft Corporation. 2011. Windows Developer Pre-
view: Win 8 Guide. http://windows.microsoft.com/en-
US/windows-8/preview, January 2012. 

18. Miller, R. B. 1968. Response time in man-computer con-
versational transactions. Fall Joint Comp. Conf. 1968, 
267-277. 

19. Pavlovych, A. C. Gutwin, (2012) Assessing Target Ac-
quisition and Tracking Performance for Moving Targets 
in the Presence of Latency and Jitter, GI 2012, to appear. 

20. Pavlovych, A., W. Stuerzlinger, (2009) The Tradeoff 
between Spatial Jitter and Latency in Pointing Tasks, 
ACM SEICS 2009, 187-196. 

21. Pavlovych, A., W. Stuerzlinger, (2011) Target Following 
Performance in the Presence of Latency, Jitter, and Sig-
nal Dropouts, GI 2011, 33-40. 

22. Potter, R. Weldon, L. J., and Shneiderman, B. 1988. Im-
proving the accuracy of touch screens: an experimental 
evaluation of strategies. In Proceedings of CHI '88. 

23. Rosenberg, I. and Perlin, K. 2009. The UnMousePad: an 
interpolating multi-touch force-sensing input pad. In Pro-
ceedings of ACM SIGGRAPH 2009 (SIGGRAPH '09). 

24. Rubine, D., McAvinney, P. 1988. The Videoharp. In 
Proceedings of International Computer Music 1988. 
Computer Music Association. September, 1988. 

25. Savage, W. C. 1970. The Measurement of Sensation: A 
Critique of Perceptual Psychophysics. Berkeley: UC 
Press. 

26. Sears, A., Jacko, J. 2012. HCI Handbook, 3rd Edition. Ch. 9. 

463



 

 

27. Seow, S. 2008. Designing and Engineering Time: The 
Psychology of Time Perception in Software. Addison-
Wesley, NY.   

28. Texas Instruments. DLP Discovery 4100 Development 
Kit. http://www.ti.com/tool/dlpd4x00kit, January 2012. 

29. Van Kessel, P. F., et al. 1998. A MEMS-Based Projec-
tion Display. In Proceedings of the IEEE, 86 (8), pp. 
1687-1704. 

30. Wellner, P. 1993. Interacting with paper on the Digital 
Desk. Communications of the ACM 36 (7), 87-96. 

31. Wigdor, D., Williams, S., Cronin, M., Levy, R., White, 
K., Mazeev, M. and Benko, H. 2009. Ripples: utilizing 
per-contact visualizations to improve user interaction 
with touch displays. In Proceedings of UIST '09. ACM, 
New York, NY, USA, 3-12. 

32. Wigdor, D., Wixon, D. (2011). Brave NUI World: De-
signing Natural User Interfaces for Touch and Gesture 
(1st ed.). Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA. 

33. Xilinx. Microblaze Processor Reference Guide. 
http://www.xilinx.com/support/documentation/sw_manu
als/xilinx13_3/mb_ref_guide.pdf, January 2012. 

 

464




