

Hammer Time! A Low-Cost, High Precision, High Accuracy
Tool to Measure the Latency of Touchscreen Devices

Jonathan Deber1,3 Bruno Araujo3,1 Ricardo Jota1,3 Clifton Forlines1,3

Darren Leigh2 Steven Sanders2 Daniel Wigdor3
1 Tactual Labs

Toronto, ON, Canada

{first.last}@tactuallabs.com

2 Tactual Labs

New York, NY, USA

{first.last}@tactuallabs.com

3 University of Toronto

Toronto, ON, Canada

{brar, daniel}@dgp.toronto.edu

ABSTRACT

We report on the Latency Hammer, a low-cost yet high-

accuracy and high-precision automated tool that measures

the interface latency of touchscreen devices. The Hammer

directly measures latency by triggering a capacitive touch

event on a device using an electrically actuated touch

simulator, and a photo sensor to monitor the screen for a

visual response. This allows us to measure the full end-to-

end latency of a touchscreen system exactly as it would be

experienced by a user. The Hammer does not require human

interaction to perform a measurement, enabling the

acquisition of large datasets. We present the operating

principles of the Hammer, and discuss its design and

construction; full design documents are available online. We

also present a series of tools and equipment that were built to

assess and validate the performance of the Hammer, and

demonstrate that it provides reliable latency measurements.

Author Keywords

Input latency; multi-touch input; latency measurement;

latency benchmark

INTRODUCTION

 I often say that when you can measure what you are

speaking about and express it in numbers you know

something about it; but when you cannot measure it, when

you cannot express it in numbers, your knowledge is of a

meagre and unsatisfactory kind…

− William Thomson, 1st Baron Kelvin [23]

The impact of a computing system’s interface latency, the

time between a user’s action and the system’s response, is a

central question in the development of interactive computing

systems and has been studied since at least the 1960s [2, 8,

9, 13, 15]. Some degree of latency is an inherent part of any

system, since a variety of tasks must be performed in order

to process a user’s action: the state of the input device(s)

must be sampled, computations performed, graphics

generated, and displays updated. Ideally, the latency would

be kept below the threshold that can be detected by the

human visual system, which would render the interface

indistinguishable from a truly latency-free system. Existing

commercial touchscreen devices have latencies that range

between 50 and 200 ms [15], and numerous researchers have

demonstrated that this latency is quite noticeable [2, 7, 8, 10,

15]; indeed, some research has suggested that humans can

perceive touchscreen latency as low as 2 ms [15]. There are

also performance improvements for dragging tasks on

touchscreens if latency is reduced below 25 ms [8].

Clearly, latency reduction is a desirable goal and is the focus

of much work in both academic and industrial settings. A

critical part of any effort to reduce latency is the ability to

measure it, since without measurement we cannot assess the

results of our efforts [23].

While many systems exist to measure latency [4, 6, 15, 21],

they tend to suffer from one or more of the following issues:

they approximate the latency measure or are imprecise; they

are cumbersome and require expensive hardware (e.g., high-

speed cameras, robotic arms); or they require human

interaction making the measurements subject to human

imprecision. While these limitations may have been

acceptable for measuring latencies on the order of 100 ms,

more recent work has demonstrated technologies which are

capable of reducing latency far below these values [11, 15].

Thus, we argue that there is the need for inexpensive test

equipment that can directly and empirically measure the

interface latency of a touchscreen device without those

issues. We set out to build such a system, which we call the

Latency Hammer. Our prototype is shown in Figure 1. The

design is open source; full design documents are available at

http://www.tactuallabs.com/latencyhammer/.

Figure 1. The Hammer prototype is composed of a

microcontroller (1) and a measurement head (2) that rests

on the device under test (3). The measurement head

contains a photodiode (4) to measure display brightness

and a brass contact (5) to trigger touch events.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for

components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

CHI'16, May 07 – 12, 2016, San Jose, CA, USA
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-3362-7/16/05… $15.00

DOI: http://dx.doi.org/10.1145/2858036.2858394

Touch Interaction #chi4good, CHI 2016, San Jose, CA, USA

2857

http://www.tactuallabs.com/latencyhammer/

The Hammer is designed to meet the following goals:

Precision & Accuracy: Given the lower bounds of human
latency perception, a measuring tool should be accurate and
repeatable to within 1 ms.

Range: Some commercially available systems have latencies
well over 100 ms, while some research-based systems have
latencies of less than 1 ms. A measuring tool should be able
to report a wide range of latencies.

Cost: The required equipment and infrastructure should be
inexpensive, ideally costing less than $100 USD.

Flexibility: The tool should be able to measure any
capacitive touchscreen device, regardless of size or platform.

Invasiveness: The tool should be able to measure devices
whether or not the tester has the ability to change or
instrument the operating system, or even the ability to install
application software on the device.

Automatic Operation: The tool should be capable of taking
measurements without any human involvement after the
initial setup and should be able to take a large number of
unattended measurements within a short timespan in order to
generate statistically significant results.

In this paper we report on the design and verification of the
Latency Hammer, and how it meets our goals. We first report
on previous work that has looked at understanding and
measuring latency. We then introduce the theory of operation
that is the basis for our current prototype. This is followed by
a detailed discussion of the implementation, as well as the
multiple validation procedures we undertook to verify that
the Hammer was accurate down to the millisecond, including
the design and construction of testing equipment for the
Hammer itself. Finally we report on the usage of the Hammer
in real-world scenarios and the complexities involved with
measuring latency in commercial devices.

RELATED WORK

We focus our review of related work on two areas. First, we
examine studies of human perception of and performance
under latency on direct-touch systems, which demonstrate
the value of reducing latency. Second, we examine past
efforts to measure end-to-end latency.

Perception of Latency for Touch Input

Latency for interactive systems has recently been the subject
of significant research [2, 7, 8, 15]. The overall findings
indicate that user interaction is affected by latency at levels
well under the ~50 ms observed in today’s fastest
devices [15]. Previous work has shown that it is harder for a
user to detect the latency of a system’s response to indirect
input than the latency in response to direct-touch input [7].
This is not unexpected, since, as Deber et al. observe [7], the
user’s finger acts as a visual referent for when and where the
system’s output should appear with zero latency, offering a
clear basis for comparison. Our work focus on direct-touch.

Kaaresoja et al. studied the visual perception of a physical
button activation [9]. They found that the lower threshold of
perception when pressing a physical button is 85 ms, and that
latencies above 100 ms significantly affect the perceived
quality of the interaction.

Recent advances in ultra-low latency direct-touch devices—
with latencies of less than 1 ms—have enabled a series of
studies that have explored the limits of latency perception [7,
8, 15]. Ng et al. studied the lower limit of perception for
touchscreen dragging and found that users could distinguish
as little as 6 ms of latency when comparing against a 1 ms
referent [15]. Jota et al. studied the perception of tapping
actions on touchscreens, complementing Ng et al.’s previous
contribution [8]. They found that users are unable to discern
latencies below 24 ms. Deber et al. studied direct and
indirect input, and showed that small improvements in
latency from a starting baseline are still perceived by users
across most baseline latencies [7]. Latency reductions as low
as 8.3 ms were noticeable when dragging on a touchscreen.

Latency perception has also been studied for direct input
with a stylus [2, 13]. Ng et al. report that 2 ms is discernible
for dragging tasks and that 6 ms is noticeable for scribbling
tasks [13]. In a follow up study, Annett et al. introduced the
complex tasks of writing and drawing [2]. They found a
higher perceivable value of 50 ms, but argued that the
complexity of the task affects perception.

These previous works strongly suggest that latency of
systems should be lower than the current commercial values
of 50–200 ms, driving our design requirement that the
Hammer be capable of measuring latencies as low as 1 ms.

Measuring Latency and Triggering Touch

Other researchers have developed touch simulators for
capacitive screens, although they have not been used to
measure latency. For example, Yu et al.’s TUIC-f tangible
tags had capacitive contacts that could be switched on and
off; individual tags were identified by switching them at
distinct frequencies [25].

Many early approaches to measuring interface latency used
external cameras to calculate the time difference between an
input and the corresponding visual response. Steed [21]
mounted a tracker on a pendulum and used this as an input
device that followed a known sine curve generated by the
pendulum’s motion. Using an external camera he captured
the pendulum’s movement and corresponding device output,
converted each movement to sine curves, and compared the
phase difference to calculate the latency. However, this
approach cannot be directly applied to direct-touch devices.

Casiez et al. demonstrated how a standard optical mouse
could be used to measure latency in a mouse-based UI [5].
The mouse was placed on top of the screen, which displayed
a moving pattern. This motion fooled the mouse’s optical
sensor into thinking that the mouse had physically moved,
and allowed a latency calculation based on the interval
between the change in the pattern and the cursor movement.
While effective for mouse-based systems, this technique is
not suitable for a touchscreen-based device.

Other approaches have measured physical distances during
dragging operations. Ng et al. [15] used a high-speed camera
to capture finger motion when dragging. The drag was
performed at a constant speed on a known path and used a
physical ruler to constrain the movement and aid the distance
calculations. The physical distance between the finger and

Touch Interaction #chi4good, CHI 2016, San Jose, CA, USA

2858

the response was used to calculate the latency. Some
commercial systems use extremely precise industrial robots
coupled with high-end high-speed cameras [18], but these
systems are prohibitively expensive for most users.

Bérard and Blanch proposed two methods of measuring
latency [4]. The first, a high precision method, uses a camera
to track a finger’s position with an added marker, and carefully
synchronizes those images with the trajectory of the finger as
recorded by the touchscreen. This approach is able to calculate
the system’s latency with a precision of 2 ms. The second
approach is less precise but does not require external
hardware. An on-screen target is moved in a circular path and
the user is asked to follow it with their finger. Since the finger
position should correspond to the currently displayed position
of the target, the distance between the target’s expected and
actual on-screen positions can be used to calculate the latency.
While useful, both of these techniques require intense human
interaction, with the second method being particularly prone
to operator errors, making it only precise to 4 ms.

Cattan and Bérard [6] built on Bérard and Blanch’s second
method by using latency prediction to simplify the task of
aligning the finger with the target. A predictive algorithm is
fine tuned to the system’s visual response in order to reduce
the apparent latency of the response to a finger. Once the
results are satisfactory, the system latency can be obtained by
looking at how the predictive algorithm was parameterized.

Liang et al. [12] demonstrated a latency estimator for a head
mounted display based on a camera recording the system’s
graphical feedback. The input device (a Polhemus Isotrak) is
attached to a pendulum with a known motion, and latency is
computed from the estimated spatial gap and pendulum speed.
Others have demonstrated equivalent solutions using other
motions. Ware and Balakrishnan [24] adopted a similar
approach but used a stepper motor to generate linear motion
instead of a pendulum. Swindell et al. [22] utilized a turntable
to move the input device in a circular motion. Pavlovych et al.
[18] were able to measure latency with an unconstrained
trajectory. They use a camera to record a mouse movement
and the corresponding cursor movement, and compare the two
video feeds to obtain the time between a mouse reaching a
target and the corresponding cursor reaching the same
location. While reporting results, the authors indicated that the
measurements are affected by the inaccuracy of the apparatus
(e.g., video-based motion tracking).

While these methods provide latency measures, they require
human motion for each measurement and can thus introduce a
source of error. We believe that tools that enable fast and
efficient unattended batch collection of latency measurements
are crucial to further our attempts to reduce latency.

THEORY OF OPERATION

The goal of the Latency Hammer is to provide a reliable
apparatus to accurately measure the end-to-end interface
latency associated with tapping on a touchscreen. This means
measuring the time from touch activation to the display of
the corresponding visual response. This interval includes both
software and hardware components: the capacitive sensor
detects the touch; the touch information is captured by the

hardware and processed by the OS; a message is passed to the
active application; the application updates its internal state
and draws new information to a display buffer; the display
buffer is passed to the operating system; the operating system
asks the display to render the display buffer; the display
updates its pixels, and is able to finally show the user the
feedback for the touch activation. Within this flow, each step
contributes to the final end-to-end latency.

However, latency is not constant, and some variability is to
be expected. While the input sensor and the display are
scanned and updated cyclically (typically between 60 and
120 Hz, with constant data transfer costs), the touch sensing
is not always synchronized with the finger landing on the
surface. In addition, the system load is not always consistent,
and the display is not always ready to render when a buffer
swap is requested. Moreover, latency is strongly connected
to the display refresh rate. On a 60 Hz display, new frames
are drawn every 16.7 ms. Minor improvements in latency
may be absorbed by the refresh rate, and large increases in
latency may suddenly occur if a small additional delay forces
the graphical update to wait for the next display frame.

Although it is tempting to attempt latency measurements
based on timestamp information internal to a device, both
software and hardware factors affecting performance mean
that the most accurate measurement of latency can only be
taken by 1) optically observing the screen’s response to a
physical input, and 2) running a series of trials to cope with
measurement variations, as described above. We therefore
focused our efforts on developing a device that could measure
end-to-end latency—from activation to observable visual
response—and that could automate multiple measurement
cycles, reducing human intervention to its bare minimum (i.e.,
initial setup for the measurement session).

The underlying concept of the Latency Hammer is
straightforward: the Hammer is placed on top of a
touchscreen device running an application that responds to a
touch event by causing a significant change in brightness.
Prior to each measurement session, the Hammer measures the
light levels associated with the bright “on” and dark “off”
states of the screen and calibrates brightness thresholds for
each state. A host computer controls the Hammer, and an
operator can initiate multiple runs of unattended
measurements. The latency measurements are automatically
clustered and analyzed; the results are provided to the
operator in both graphical and textual formats.

When a measurement cycle is initiated, the Hammer records
a timestamp and then uses a touch simulator to trigger the
capacitive screen and generate a touch event. This is entirely
automated and does not involve a human, although from the
touchscreen’s point of view the simulated touch is
indistinguishable from a human tapping the screen. After
initiating the touch, the Hammer uses a photo sensor to watch
for the change in screen brightness caused by the response to
the touch. Once a change is observed, the Hammer records a
second timestamp. The elapsed time between the timestamps
constitutes a single latency measurement. The automated
nature of the Hammer means that hundreds of measurements
can easily be collected when evaluating a device.

Touch Interaction #chi4good, CHI 2016, San Jose, CA, USA

2859

To maximize changes in brightness, ideally we make use of
one of our custom Hammer applications; these have a black
screen and then draw a white region in response to a touch
event. However, it is possible to use any change in UI
brightness (e.g., a button activation highlight) at the cost of
some sensitivity. This allows us to use the Hammer to
measure the latency of commercial applications and on
devices that do not permit third-party code.

The version of the Latency Hammer described in this paper
has no moving parts in the touch simulator. Although this
presented some design challenges, detailed in the following
section, solving these issues allowed us to reproducibly and
precisely trigger touch events without human intervention.
Removing the human element from the measurement process
enabled us to automate it; we believe that this is a significant
contribution of the Hammer prototype.

Figure 2 presents a diagram of the main components of the
Hammer. The measurement head contains the touch actuator
(a brass contact approximately the size of a human fingertip)
and brightness sensor (a photodiode). When positioned on top
of a capacitive touchscreen, the brass contact is designed so
that it will not trigger a touch by itself. However, if it is
electrically connected to an electron sink that provides
additional mass and surface area, it will trigger a touch event.
An electronically actuated normally open (NO) switch
controls this connection. When the switch is closed, the brass
contact is connected to the electron sink, disturbing the
capacitive levels on the touchscreen and triggering a touch.

HARDWARE IMPLEMENTATION

Implementing the Hammer requires us to provide solutions

for every step defined in the previous section: generating a

touch event, capturing feedback from the display, and

accurately calculating the time between the two events.

Moreover, there are some practical considerations (e.g.,

securing the Hammer to the device) that influence the design.

In this section, we describe the implementation of our

prototype. We begin with a discussion of the measurement

head (responsible for generating touches and sensing the

screen’s response) and close with a discussion of the main

board, which houses the microcontroller. Detailed

construction details are provided online.

Measurement Head

The measurement head is a custom 3D printed roughly

cylindrical enclosure that includes the circuitry to generate

the simulated touch and deliver it to the screen through a

brass contact, as well as a photodiode to sense feedback (see

Figure 1, right). The brass contact and photodiode protrude

through a hole in the bottom of the head, and rest on the

screen during testing. The remainder of the bottom surface is

covered in a layer of EPDM rubber to allow the head to grip

the screen. A small circuit board is mounted inside the head

and contains the switch (and supporting circuitry) that

generates the touch; this switch is discussed in detail in the

following section. The top of the head is covered in Velcro

hook-and-loop fastener which enables repositionable

weights that help the measurement head sit flat on the screen.

We now detail the two main functions of the measurement

head: generating touch and sensing feedback.

Generating Touch

One of the goals of the Hammer was to reduce the possibility

of human-induced errors during the measurement. To

effectively remove the human from the measurement loop

the Hammer must create a simulated touch that is

indistinguishable from an actual human touch. In order to do

this it generates a change in the screen capacitance that the

sensor identifies as a touch, and it is able to programmatically

trigger and reverse this change.

Generating changes in capacitance: To generate these

changes in capacitance, we use a brass contact connected to an

electron sink. Brass was selected because it is highly

conductive, corrosion resistant, and relatively soft (as metals

go) reducing the likelihood of screen damage due to scratches;

it is also relatively lightweight which reduces the likelihood of

screen damage due to impacts. The contact is 12 mm in

diameter (similar to a fingertip) and 2 mm tall. The design

parameters for the contact are quite flexible but care must be

taken to minimize the surface area so the contact does not

trigger a touch event on its own. The inside of the brass contact

(i.e., the side that is facing into the measurement head

enclosure) was coated in liquid rubber insulation.

The brass contact is connected to an electron sink in order to

dissipate additional charge. It is actually quite easy to

dissipate sufficient charge, and in most cases the greater

challenge is preventing an unintentional dissipation. As an

example, connecting the brass contact to one end of a 30 cm

22 AWG wire with alligator clips (leaving the other end of

the wire disconnected) was enough to induce a touch event.

The current prototype repurposes a small bare aluminum heat

sink (Ohmite R2V-CT6-38E [16]), since the characteristics

of a heat sink (conductive material arranged to maximize its

surface area) overlap completely with the design

requirements of an electron sink. By connecting the contact

to the electron sink, we could reliably trigger a touch. We

next needed a way to programmatically enable and disable

that connection.

Figure 2. Block diagram of the Latency Hammer. The main

board triggers a touch by closing the switch (1) to generate a

capacitive disturbance on the screen. The visual response is

monitored by the photodiode (2) connected to the microcontroller.

The computed latency is then output to the host computer.

Touch Interaction #chi4good, CHI 2016, San Jose, CA, USA

2860

Triggering touch programmatically: The choice of the
electrically actuated switch is a critical part of the Hammer’s
design because a very small change in capacitance (on the
order of 1 pF) is needed to register a touch event on a
capacitance sensor and most switches leak too much current
when open. This leakage would result in a touch event as
soon as the Hammer came in contact with the screen,
regardless of the switch position. During the development
process numerous alternatives were examined and tested,
including solid-state analog switches, tri-state devices,
transistors, solid-state relays, and mechanical relays. We saw
the most consistent performance with an Omron G6J-2P-Y,
which is a highly insulated mechanical relay [16]. This relay,
along with careful hardware design, was able to completely
eliminate erroneous touch events.

Despite its advantages, a reliance on a mechanical switch
introduced new problems. Switching a mechanical relay
involves energizing a coil to magnetically move a metal
contact, and a movement in the macroscopic world takes far
longer—on the order of several ms—than the sub-atomic
equivalent in a solid-state switch. While we could safely
ignore a few ns of solid-state switching time when taking ms-
scale latency measurements, we cannot ignore a ms-scale
switching time. Fortunately, there was a straightforward way
to measure the switching time in real-time during each
latency measurement: we used a double pole relay with two
switches controlled by a single coil. One pole was used to
switch the touch simulator, and the other pole was fed into
an input pin on our microcontroller. A change on that pin
indicated the relay had closed, allowing us to subtract the
relay’s switching time from the latency measurement. A
related concern is the bounce associated with the closure of
a mechanical switch. Physical contacts can vibrate, causing
a short period of rapid oscillations when a switch closes. We
measured the bounce with an oscilloscope, and over a dataset
of 50 relay closings found an average bounce time of 0.118
ms (SD=0.003), which could safely be ignored.

Finally, when designing the circuitry to trigger touch, special
attention was paid in order to minimize current leakage and
stray capacitance, since they could trigger unintended touches.
Because the relay is acting as a switch between the brass
contact (which is always resting on the screen) and the
electron sink, one half of the switch will always be connected
to the brass contact, regardless of the switch position. In
order to minimize the length of the connection, and therefore
reduce leakage, the relay must be placed as close as possible
to the brass contact in the measurement head, which
necessitates a small circuit board inside the head.

Sensing Feedback

The Hammer must be able to identify feedback generated by

the simulated touch in order to compute the device’s latency.

Any screen response can be identified as a change in

brightness, ideally as a transition from a black screen to a

white one. We use a Vishay BPW46 PIN photodiode [20] to

identify changes in brightness. This photodiode was selected

because it has a fast and consistent response time, a flat-sided

package that can sit flush against the screen, and good visible

light sensitivity.

The photodiode is mounted in the measurement head

adjacent to the brass contact, which allows it to observe a

response in close proximity to the touch event, and is

connected to an ADC (analog to digital converter) in the

microcontroller via a shielded cable to the main board.

Because we run a raw analog signal over the cable, it is

somewhat sensitive to noise. In the current design, we do not

have any active circuitry adjacent to the photodiode in the

measurement head, since the size of circuit that could be

accommodated was limited. Placing a high-speed ADC in

the measurement head would allow us to transmit a digital

signal from the measurement head to the main board, and that

signal would be more resilient to noise. However, the current

approach is quite workable, and we have been able to

mitigate most noise issues using both hardware (e.g., careful

shielding) and software (e.g., detecting anomalous

photodiode readings and rejecting any compromised trials).

Main Board

With the brass contact and photodiode in place, we now

describe the core of the Hammer. The main board contains

the microcontroller and supporting circuitry; it is responsible

for triggering the switch to generate a touch, and then sensing

the photodiode for changes in brightness. Once this is

detected, the Hammer can calculate the time difference and

output a latency measurement.

The brain of the Hammer is an Arduino Due microcontroller

board [3], which is based on an Atmel SAM3X8E ARM

Cortex-M3 CPU running at 84 MHz. In addition to the digital

I/O pins, we make use of one of the built-in 12-bit ADCs to

read the photodiode light levels. The customized supporting

circuitry for the Hammer is built on a protoshield, which

provides 30 cm2 of perfboard in an Arduino-compatible form

factor. The measurement head is connected to the main board

via a pair of shielded Category 6 STP cables (i.e., Ethernet

cable and connectors). The cables do not carry Ethernet

signals; they are simply readily available shielded multi-

conductor cables with built-in connectors. Once the Hammer

has a measurement, it is sent to the host computer, which

aggregates and logs all the measurements. The software for

the microcontroller, the host computer, and device-specific

helper applications are described in the next section.

HAMMER SOFTWARE

There are several software components that are required to
perform a latency measurement. The main responsibility of
the software is to coordinate the events defined in the
previous sections and to store that information in the host
computer for later analysis. Software is divided in two main
components: the firmware, and the host computer software.
There is also software that runs on the device under test. We
provide “white touch” applications for several platforms that
draw a black screen and then respond to a touch event by
drawing a white region, but any application which causes a
brightness change at the point of a touch will suffice.

Touch Interaction #chi4good, CHI 2016, San Jose, CA, USA

2861

Firmware

The firmware is responsible for the low-level actions
involved in running a latency measurement and for
transmitting the results back to the host computer. It can also
run a series of precisely spaced measurements, which is used
by the host software to create extended latency datasets; the
data flow is described in the following section. Finally, the
firmware is also responsible for maintaining a calibration of
brightness levels of the “on” and “off” touch states. Written
in the Arduino variant of C, the firmware interacts with the
host computer via a USB-based serial console. The protocol
is human-readable to facilitate easy debugging operations.

Host Computer Software

The host software is the front end of the Hammer. It is an
interactive command line application written in Python that
sends commands to the firmware, receives and analyses the
results, and outputs data files and charts to the user.

Dataflow

A sample dataflow is as follows: The user places the
Hammer on the screen of the device under test, and indicates
the desired number of series to run, each of which consists of
10 measurements. Extended testing could use 100 series (for
a total of 1000 measurements), but a small number of series
(e.g., 5) will generally yield a good overview of the device’s
latency. The host software instructs the firmware to calibrate
the “on” and “off” light levels and then begins running the
first series of tests. Between each series, a randomized delay
between 0–16.7 ms is communicated to the Hammer in order
to distribute the measurements across the screen’s refresh
cycle. When all series are complete, the user is alerted, and
results are shown on-screen. During the capture of latency
measurements, user interaction is only required if the Hammer
has detected a malfunction (e.g., a human is required to push
a power button to wake the device).

Once all of the data is collected, the host software runs a k-
means clustering algorithm across all of the measurements
from all of the series. This is done because we expect
groupings based on the display refresh cycle. The output data
typically cluster around multiples of the display refresh time.
The raw and clustered data is then logged, and a visual
representation of the observed latencies is displayed. A
sample chart is shown in Figure 3. Raw data is also made
available to the user for logging or further analysis.

VALIDATION

The development of any type of test equipment requires a

careful and thorough validation process to ensure that the

equipment is, in fact, measuring reality. In many cases it is

possible to verify new test equipment against an existing

gold standard or test regime, providing a chain of

metrological traceability. However, there is no standard or

regime for latency measurement devices. We therefore

contribute to the community by developing a series of tests

and test equipment to provide confidence that the Hammer is

correctly measuring latency. We hope to contribute towards

a gold standard with our prototype and with our set of tests

geared towards validating future measuring devices.

Our first test measures relative latency. We intentionally add

latency to a device, and check that the Hammer is able to

detect it. The second test measures the overhead involved in

a Hammer measurement by creating and measuring a zero-

latency device. The third test seeks to validate the absolute

accuracy and repeatability by creating a simple oscillator-

based latency generator circuit and simultaneously

measuring it with the Hammer and with an oscilloscope. The

fourth and final test cross-validates the Hammer by building

a camera-based apparatus and simultaneously measuring a

real device with both the camera and the Hammer.

Software Delay Test

We created two variants of our “white touch” applications

(running on iOS and Android) that added an arbitrary delay

prior to drawing the white region in response to a touch. Each

application added this delay with a different programmatic

mechanism. As our first measurement of the Hammer’s

accuracy, we attempted to measure that added latency. This

allowed us to verify the relative measurement performance

of the Hammer (e.g., configurations A and B are 50 ms apart)

independent of the Hammer’s absolute measurement

performance (e.g., configuration A has 100 ms of latency).

The first application introduces milliseconds of latency

(using POSIX usleep). We then ran several series of latency

measurements using different added latencies using an iPad

mini running iOS 7.1.2. The second application delays the

response by a certain number of display frames, rather than

by a certain number of ms. This allowed us to take into

account the device’s limitation in rendering to the display

and measure latency in display frames. To add additional

robustness to our verification, we opted to use Android for

this test, and used Android’s Choreographer to schedule the

screen update in the future. Tests were performed on a Nexus

9 running Android 5.1.1. Table 1 shows the results for both

iPad and Nexus 9 tests.

Overhead Test

The Hammer is only useful if it can measure absolute levels

of latency. A key issue in calibrating these measurements is

to understand the overhead of the measurement process.

Several steps in the measurement process have small but

finite durations (e.g., the time required for the ADC to read

Figure 3. Graphical summary generated by the Hammer

showing 100 measurements of a Nexus 9. The dataset contains

10 series, each of which contains 10 measurements. Each row

corresponds to one series. Measurements cluster into two

groups, with means spaced one display frame (16.8 ms) apart,

illustrating the variability of the device’s latency.

Touch Interaction #chi4good, CHI 2016, San Jose, CA, USA

2862

the photodiode’s signal), and we must ensure that these steps

do not introduce an uncorrected delay that would skew the

latency measurements. To measure this overhead, we created

a device configuration that mimicked a zero-latency device

by simply displaying a white screen. This meant that the

Hammer would detect a visual touch response as soon as it

starts checking for one, and any reported non-zero latency

would therefore entirely consist of measurement overhead.

After 20 sample measurements, we found that the overhead

was a consistent 0.006 ms (SD = 0 ms), which is several

orders of magnitude smaller than the quantities that we are

measuring, confirming that the Hammer overhead can be

safely ignored in our latency calculations.

Oscillator Test

Having established the non-effect of overhead, we wished to

measure the accuracy of absolute latency testing. Because

commercial devices exhibit significant variability in their

latencies between measurements they cannot be used as a

ground truth. Instead, we constructed a simple oscillator-

based circuit to act as a gold-standard calibration target. It is

based on a monostable configuration of a 555 timer and

provides a controlled, repeatable delay: an input pulse is fed

into the circuit, and it enables an output pin after a

controllable time interval. That interval is set with a variable

resistor, and in the current configuration it can be set between

1 and 500 ms. The delay was verified using an oscilloscope.

To test the Hammer, we connected the output of the oscillator

to an LED with a ns-scale response time. We then connected

the input of the oscillator to the signal from the Hammer that

powers the relay. The Hammer’s measurement head was

placed so that it was sitting on top of the LED. No

touchscreen device was used during these tests; instead, the

LED played the role of the screen. When a Hammer

measurement was run, the Hammer would power the relay to

simulate a touch; the touch simulator would have no effect,

since there was no touchscreen, but powering the relay would

begin the oscillator’s delay. After the specified time interval,

the oscillator would turn on the LED, and the Hammer would

record a response from the “screen”. An oscilloscope was

connected during each trial, and was used to measure the

delay produced by circuit. We were then able to compare the

latencies reported by the Hammer and by the oscilloscope.

The results of our tests are shown in Figure 4, and

demonstrate that the Hammer is repeatable within 0.4%

across a range of latencies.

Camera-Based External Validation test

Though our Oscillator Test provided assurance of the

absolute accuracy of our device, we wanted to perform an

additional validation using a high-speed camera and an

external method of triggering a touch. This orthogonal

approach provided us with several benefits. First, it provided

additional confidence that the Hammer was functioning as

expected. Second, it provided a mechanism to cross-validate

the Hammer’s sensor inputs and ensure they are functioning

correctly. Finally, we wished to conduct tests similar to those

that have been done previously in the literature, such as by

Ng et al. [15], in order to provide additional confidence.

The biggest challenge of camera-based validations of a

tapping event is determining the moment of impact, which

must be precisely measured in order to calculate latency.

Most traditional capacitive styli have a solid internal tip

(often made from brass) that is covered by a molded

conductive rubber nub that is highly deformable.

Unfortunately, this malleability means that the moment of

screen contact can be somewhat ambiguous. When a stylus

hits the screen, the initial point of impact will be the front

edge of the rubber tip, which will begin to deform as the tip

is compressed against the screen. The earliest stages of the

impact may not trigger a touch event, and it can be difficult

to visually determine the precise moment of impact. In order

to remove this potential confound, we needed a stylus with a

rigid tip. The tip must be conductive but still light and soft

enough to avoid damaging the screen.

Table 1. Software Delay validation results. Each row

shows one test condition containing 200 measurements.

We show data for the two largest clusters (Main and

Secondary) which constitute almost all measurements. The

right column shows the difference between the baseline

and the Main cluster, which matches the expected value.

Secondary clusters are one 60 Hz display frame slower.

Figure 4. Oscillator validation results. Simultaneous

measurements were taken with the Hammer and with an

oscilloscope at a variety of latencies between 1 and 200 ms.

All differences are below 0.4%, with most below 0.25%.

Error bars show standard deviation.

Touch Interaction #chi4good, CHI 2016, San Jose, CA, USA

2863

A second complication with optical-based stylus
measurements is that capacitive sensors can detect objects
that are above the sensor, and not merely those that are in
contact with it. Touch detection is based on thresholding a
continuous signal that increases as an object gets closer to
the sensor, and not on an inherently binary value. The
thresholds are generally tuned so that the sensors detect input
that is a few tenths of a mm above the surface. The problem
with this detection height is that a device will receive a touch
event when a stylus crosses the detection threshold, and not
when it actually contacts with the screen itself. This means
that a timing estimate based on the moment of contact may
be slightly incorrect. Finally, because of the variance in
latency on commodity devices, we need a way to measure
the same touch event using both the Hammer and the high-
speed camera, since we cannot directly compare sequential
readings. To overcome these complications we designed the
Direct Optical Hammer to externally validate the Latency
Hammer, illustrated in Figure 5.

The Direct Optical Hammer is designed to produce a
carefully controlled physical interaction with the screen, and
allow that interaction to be easily timed using a consumer
level high-speed but low-resolution camera. (We used a
Nikon 1 J3, which can capture 1200 fps at a resolution of
320x120.) It also allows that interaction to be measured
simultaneously by the Latency Hammer. The device is
equipped with a custom capacitive stylus and extra apparatus
to precisely record the moment of touch.

Custom Capacitive Stylus

The heart of the apparatus is a custom-built capacitive stylus.
The body of the stylus is an aluminum rod (10 mm diameter),
and the tip is a circular disk of UHMW polyethylene
conductive plastic (12 mm diameter by 6 mm tall, sized to
provide a contact area similar to a finger). This slippery
plastic is extremely light and firm (similar to a plastic kitchen
cutting board), and does not appreciably deform when it
contacts the screen. The rod is held in place by a linear
bearing which constrains the motion of the rod to a single
axis. The bearing is attached to a custom 3D-printed
mounting assembly that ensures the rod is perpendicular to
the screen. The rod is connected with ultra-flexible wire
(which has no impact on the movement of the rod) to a small
circuit board in the mounting frame, and then to an electron
sink similar to one used in the Hammer. This hardware
configuration yields a capacitive stylus with a non-
deformable tip that can be manually lifted a small distance
off of a touchscreen, and then be precisely dropped onto the
screen with no side-to-side movement.

This hardware is useful for conducting controlled
observations, but it is not enough to allow an easy analysis
via low-resolution high-speed footage.

Capturing Touch Time with a High-Speed Camera

To aid the analysis process, we added several additional
components to create an onset-of-touch mechanical switch
that is closed at the same instant the stylus triggers a touch
event. The switch is constructed in two halves. The first is a

1 x 5 cm rigid cross piece added to the top of the rod (forming
a “T”), with a brass contact plate on its bottom surface. The
second half is a finely adjustable screw assembly mounted
into the linear bearing parallel and immediately adjacent to
the rod, with a brass plate on its top surface. The positioning
of the screw and cross piece were arranged so that the contact
plate on the cross piece will land on the contact on the screw.
The screw acts as a stop that can prevent the stylus from
travelling any further towards the screen, and the pair of
brass plates will complete a circuit whenever the cross piece
is resting on the screw. The utility of this apparatus stems
from the choice of adjustment screw, which has extremely
fine 100 TPI (threads per inch) threads. (As a comparison
with a more common screw, the screw that connects a camera
to a tripod is only 20 TPI.). The fine threads mean the height
of the screw can be precisely controlled, since each full
revolution of the screw changes its height by only 0.25 mm,
and smaller adjustments can easily allow 0.01 mm changes.

Calibration and Operation of the Direct Optical Hammer

The Direct Optical Hammer must be calibrated so that the
onset-of-touch switch triggers at the exact moment a touch is
activated. First, the height of the screw is lowered so that it
is below the level of the cross piece when the stylus is resting
on the screen. Since the stylus is completely unimpeded by
the screw, it will trigger a touch event, and will not close the
onset-of-touch switch. We then raise the height of the screw
until it comes into contact with the cross piece, which closes
the switch but does not impact the touch event, since the
stylus has not moved. We continue to raise the screw, which
begins to lift the cross piece (and therefore the entire stylus)
off of the screen. Eventually, the screw will lift the stylus far
enough off the screen that it will cross the detection
threshold, and a touch event will no longer be triggered. At
this point we lower the screw until a touch event occurs.
After a series of minute adjustments (which include lifting
and dropping the stylus several times after each adjustment),
we can calibrate the height of the screw so that the stylus will
be stopped (and the onset-of-touch signal generated) at the
exact height that triggers a touch event. We connect this

Figure 5. The Direct Optical Hammer is built around a

custom capacitive stylus (1). An onset-of-touch signal is

created when the adjustable screw (2) makes contact with

a cross piece (3), and illuminates the LED (4). The speed of

the stylus drop is controlled by an upper stop (5) that

ensures the stylus is always dropped from the same height.

Touch Interaction #chi4good, CHI 2016, San Jose, CA, USA

2864

signal to an LED with a ns-scale response time to provide an
easily discernible visual signal on a low resolution video.
Finally, we added an upper stop so that the stylus was always
dropped from the same height to ensure the same downward
velocity, and a spring to prevent the stylus from bouncing
when it hits the screen. With this calibration complete, we
can assemble the experimental setup shown in Figure 5.

Validation

A Nexus 9 tablet was placed under the Latency Hammer, and

our high-speed camera was positioned so that it was pointing

down at the tablet. The Direct Optical Hammer was placed

on the tablet, and the LED positioned so that it was clearly

visible in the camera image. The onset-of-touch signal was

connected to the relay closure detection circuit in the Latency

Hammer, and the power to the relay was disconnected. This

meant that nothing would happen when the Hammer tried to

activate the relay to simulate a touch, but the Hammer would

nonetheless detect a signal putatively indicating that the relay

had closed. In other words, from the Hammer’s point of

view, a calibration trial was identical to a regular trial except

that it took the “relay” several seconds to close (i.e., the time

required to lift and drop the stylus), rather than the couple of

ms that an actual relay would require. Since the Hammer

automatically subtracts the relay closing time from its

measured latency, we generated valid readings without

requiring any hardware or software change, which enabled

us to test the Hammer in a configuration that was as close to

normal as possible. The Hammer measurement head was

positioned so that it was aligned with the stylus, and an

oscilloscope was connected to the onset-of-touch signal to

determine if the stylus bounced when it hit the screen.

Bounces were extremely small and not visible to the naked

eye, but could occur due to the mechanical forces involved.

A bounce-free impact results in a step function in the onset-

of-touch signal: it goes from low to high in a single

transition. A bounce manifests itself as a series of low-high-

low-high transitions, which usually occurred over a period of

a few ms. Because bounces would add an additional

confounding variable (i.e., it would be unclear which impact

the device responding to), trials that bounced were discarded.

A trial consisted of the following steps. The Hammer was

commanded to begin a reading; no relay activity (and

therefore no simulated touch) would occur, since the relay’s

power had been disconnected. The high-speed camera was

started, and the stylus was then manually lifted to the upper

stop and gently released, imparting as little vertical velocity

as possible. At the moment that the touchscreen registered a

stouch event from the falling stylus, the onset-of-touch signal

illuminated the LED and told the Hammer that its relay had

closed. The Hammer would begin monitoring its photodiode,

and then report a latency. The high-speed footage was then

analyzed manually, and the frame numbers corresponding to

the LED illumination and screen response were recorded.

We calculated the latency based on the high-speed footage

and compared it to the latency reported by the Hammer.

Results
The optical latency measurements have an uncertainty
corresponding to two camera frames (1.66 ms) due to
resolution and frame rate limitations. Like most screens, the
LCD in the Nexus 9 refreshes from top to bottom. When
viewed at 1200 fps, this refresh is clearly visible, and the
screen’s transition from black to white as it redraws in
response to the touch event progresses at approximately
8 mm per camera frame. Low resolution footage of this
redraw progression makes it somewhat ambiguous as to the
exact moment when the photodiode will be sufficiently
illuminated to generate a “screen is on” signal, although it is
clear that it happens within the two frame window.

We conducted a series of 20 combined samples with a
Nexus 9 under normal conditions (i.e., radio on, random
background applications running on the device.) The latency
measured by each apparatus varied from 75 to 200 ms across
the 20 samples. The average difference for a given sample
between the optical and Hammer latency measurements was
0.88% (SD = 0.39%). Due to the footage uncertainties
discussed above, we also report the difference for the frame
where the display has redrawn beyond the photodiode (i.e.,
the worst case scenario); this resulted in an average
difference of 1.6% (SD = 0.59%).

These validation techniques all demonstrate the accuracy and
reliability of the Hammer. However, measuring the latency
of real-world commodity devices can be complex, and we
now report on some of these challenges.

MEASURING LATENCY IN THE REAL-WORLD

During the development of our latency measurement tools
and the analysis of many different devices, we have found
that latency can be a remarkably fuzzy concept. In general,
when dealing with a commodity device running a standard
operating system, it does not make sense to speak of “the
latency” of the device. Instead, we routinely see the same
device exhibiting a wide range of latencies, sometimes
varying by as many as 3 frames (50 ms) between sequential
samples, as exemplified in Figure 6. This phenomenon may
not occur on specialized devices such as the demonstrator
systems described previously in the literature [11, 15], but it
is evident and widespread on commercially-available
devices.

Figure 6. Raw results of 600 latency measurements on a

Nexus 5 running Android 5.1.1. The devices exhibits a

latency profile that changes over time.

Touch Interaction #chi4good, CHI 2016, San Jose, CA, USA

2865

These variations in performance are not surprising, given the
complex nature of the systems in question. Some of the
factors that we have observed impacting performance are:

Heat. On many systems, as their internal temperature
increases, the OS may choose to disable or throttle one or
more CPU cores to reduce the thermal load. This effect is
more pronounced on small devices (e.g., phones or tablets),
since they often lack fans or other active thermal management
technologies and thus have fewer options to cool themselves.
We observed the effect of thermal throttling during longer
measurement runs on some devices. For example, on the
dataset from a Nexus 5 phone shown in Figure 6, we found
that our initial sets of measurements were split between
clusters at 69.1 and 85.2 ms. However, after approximately
300 measurements, an additional frame of latency would
suddenly appear, and we would record latency clusters at
100.6 and 117.4 ms. Allowing the phone to cool off (or briefly
placing it in a freezer) would restore the faster performance.

System Load. As we would expect, a busy OS handling a
large number of processes will perform worse than a system
that is idle. Reducing the number of background tasks (e.g.,
quitting other apps, disabling radios via Airplane mode, etc.)
would often improve device latency.

Battery State. Similar to heat, throttling may occur if the
device’s battery level is low, and the OS switches off or
throttles CPU cores in an attempt to save power.

Vertical Screen Refresh. As discussed above in the section
on the Direct Optical Hammer, most screens redraw from top
to bottom. This redraw time is small, but can be on the order
of ms. For example, we observed that a Nexus 9 could take
upwards of 10 ms to redraw its screen. This means that the
location of the measurement head can have an impact, since
the same redraw operation will appear to take less time if the
screen response is measured at the top rather than the bottom
of the screen. The position of the measurement head must
therefore be standardized (e.g., at the center of the screen). In
this paper, all measurements were obtained from the center of
the screen, a position we assume is centered in the redraw step.

Some of these issues do not have clear answers, since it
depends on the purpose of the latency measurement. In other
words, when we measure the latency of a device, are we
interested in best possible performance that the hardware can
exhibit (e.g., a cold, idle phone in Airplane mode), or the
worst performance that a user is likely to encounter in the
wild (e.g., a hot phone with a low battery, running many
background tasks while connected to a busy Wi-Fi network)?
The answer will depend on the context of the measurements.
In either case, it is important to think of latency as a range of
possible values, rather than a single number. However, all of
these variables can be quantified, and can often be obtained
programmatically by the measurement applications (e.g.,
querying the OS to determine the current power saving
mode), thus adding context to the obtained measurements.
Furthermore, the automation facilitated by the Hammer
allows us to consider latency within the context of the
complexity of real-world devices in real-world conditions,
which has not been possible with previous latency
measurement devices explored by the community.

Sample Data

We now present some latency measurements for recent
commercial devices, which are shown in Table 2. As in Table
1, we present the two largest clusters of measurements. 500
measurements were taken for each device. As we have
discussed, many factors can impact the latency of a device.
While we have attempted to control for many of these (e.g.,
low temperature, low load, full battery), others, such as
differences in software, are beyond our control. As such, it is
important to understand that this data, while accurate and
representative, does not lend itself to cross-device
comparisons. Just as fuel efficiency standards provide
multiple ratings (“city” and “highway”), there is a clear need
to develop a framework for the conditions under which
latencies are measured with a device such as the Hammer.
This is an important area of future work.

FUTURE WORK AND CONCLUSION

We have presented the Latency Hammer, a tool that
empirically measures the interface latency of touchscreen
devices. The Hammer is low-cost and capable of measuring
latency with little or no human involvement. We also provide
software tools that automatically analyze the resulting data.

We have also presented a series of hardware and software
tools used to evaluate the Hammer, and demonstrated that
the Hammer is repeatable to within 0.4% between successive
measurements of a simplified oscillator circuit and that its
measurements are within 0.8%–1.6% of measurements taken
with a high-speed camera. These validation tools can be used
to benchmark other latency measurement equipment.

We intend to continue development of the Latency Hammer
system and to further improve the robustness of the design
(e.g., moving the ADC into the measurement head to reduce
noise). We are keenly interested in adapting the Hammer
(including some of the approaches used in the Direct Optical
Hammer) to test dragging performance, the impact of
multitouch, and to test non-capacitive sensors (e.g., EMR
pens, or optical sensors). Finally, we intend to continue the
development of our benchmarking tools and validation
techniques in order to provide further confidence in the
robustness of our systems and to provide a standard set of
benchmarks for others.

The Hammer is a powerful tool that can be used by system
builders at both the hardware and software level. We hope that
the low-cost and availability of such a measurement tool will
speed and simplify system development and improvement.

ACKNOWLEDGEMENTS

Thanks to our colleagues at Tactual Labs and at the DGP lab
at the University of Toronto. Special thanks to Michael
Glueck, Katie Barker, John Hancock, and Preksha Kashyap.

Table 2. Results of 500 measurements for several

commercial devices. The two largest clusters are reported.

Touch Interaction #chi4good, CHI 2016, San Jose, CA, USA

2866

REFERENCES

1. Glen Anderson, Rita Doherty, and Subhashini

Ganapathy. 2011. User Perception of Touch Screen

Latency. In Proceedings of Design, User Experience,

and Usability (DUXU ’11). Springer-Verlag GmbH

Berlin Heidelberg, 195–202. DOI:

http://dx.doi.org/10.1007/978-3-642-21675-6_23

2. Michelle Annett, Albert Ng, Paul Dietz, Walter F.

Bischof, and Anoop Gupta. 2014. How Low Should

We Go? Understanding the Perception of Latency

While Inking. In Proceedings of Graphics Interface

2014 (GI ’14). Canadian Information Processing

Society, Toronto, ON, Canada, 167–174.

http://dl.acm.org/citation.cfm?id= 2619648.2619677

3. Arduino LLC. 2012. Arduino Due microcontroller

board. Retrieved January 8, 2016 from

https://www.arduino.cc/en/Main/ArduinoBoardDue.

4. François Bérard and Renaud Blanch. 2013. Two Touch

System Latency Estimators: High Accuracy and Low

Overhead. In Proceedings of the 2013 ACM

International Conference on Interactive Tabletops and

Surfaces (ITS ’13). ACM, New York, NY, USA, 241–

250. DOI: http://dx.doi.org/10.1145/2512349.2512796

5. Géry Casiez, Stéphane Conversy, Matthieu Falce,

Stéphane Huot, and Nicolas Roussel. 2015. Looking

through the Eye of the Mouse: A Simple Method for

Measuring End-to-end Latency using an Optical Mouse.

In Proceedings of the 28th Annual ACM Symposium on

User Interface Software and Technology (UIST ’15).

ACM, New York, NY, USA, 629–636. DOI:

http://dx.doi.org/10.1145/2807442.2807454

6. Elie Cattan and Francois Bérard. 2015. A Predictive

Approach for an End-to-End Touch-Latency

Measurement. In Proceedings of the 2015 ACM

International Conference on Interactive Tabletops and

Surfaces (ITS ’15). ACM, New York, NY, USA, 215–

218. DOI: http://dx.doi.org/10.1145/2817721.2817747

7. Jonathan Deber, Ricardo Jota, Clifton Forlines, and

Daniel Wigdor. 2015. How Much Faster is Fast

Enough? User Perception of Latency & Latency

Improvements in Direct and Indirect Touch. In

Proceedings of the 33rd Annual ACM Conference on

Human Factors in Computing Systems (CHI ’15).

ACM, New York, NY, USA, 1827–1836. DOI:

http://dx.doi.org/10.1145/2702123.2702300

8. Ricardo Jota, Albert Ng, Paul Dietz, and Daniel

Wigdor. 2013. How Fast is Fast Enough? A Study of

the Effects of Latency in Direct-touch Pointing Tasks.

In Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems (CHI ’13). ACM, New

York, NY, USA, 2291–2300. DOI:

http://dx.doi.org/10.1145/2470654.2481317

9. Topi Kaaresoja and Stephen Brewster. 2010. Feedback

is... Late: Measuring Multimodal Delays in Mobile

Device Touchscreen Interaction. In International

Conference on Multimodal Interfaces and the

Workshop on Machine Learning for Multimodal

Interaction (ICMI-MLMI ’10). ACM, New York, NY,

USA, Article 2, 8 pages. DOI:

http://dx.doi.org/10.1145/1891903.1891907

10. Joseph J. LaViola. 2003. Double Exponential

Smoothing: An Alternative to Kalman Filter-based

Predictive Tracking. In Proceedings of the Workshop

on Virtual Environments 2003 (EGVE’03). ACM, New

York, NY, USA, 199–206. DOI:

http://dx.doi.org/10.1145/769953.769976

11. Darren Leigh, Clifton Forlines, Ricardo Jota, Steven

Sanders, and Daniel Wigdor. 2014. High Rate, Low-

latency Multi-touch Sensing with Simultaneous

Orthogonal Multiplexing. In Proceedings of the 27th

Annual ACM Symposium on User Interface Software

and Technology (UIST ’14). ACM, New York, NY,

USA, 355–364. DOI:

http://dx.doi.org/10.1145/2642918.2647353

12. Jiandong Liang, Chris Shaw, and Mark Green. 1991.

On Temporal-spatial Realism in the Virtual Reality

Environment. In Proceedings of the 4th Annual ACM

Symposium on User Interface Software and

Technology (UIST ’91). ACM, New York, NY, USA,

19–25. DOI: http://dx.doi.org/10.1145/120782.120784

13. Robert B. Miller. 1968. Response Time in Man-

computer Conversational Transactions. In Proceedings

of the December 9–11, 1968, Fall Joint Computer

Conference, Part I (AFIPS ’68 (Fall, part I)). ACM,

New York, NY, USA, 267–277. DOI:

http://dx.doi.org/10.1145/1476589.1476628

14. Albert Ng, Michelle Annett, Paul Dietz, Anoop Gupta,

and Walter F. Bischof. 2014. In the Blink of an Eye:

Investigating Latency Perception During Stylus

Interaction. In Proceedings of the SIGCHI Conference

on Human Factors in Computing Systems (CHI ’14).

ACM, New York, NY, USA, 1103–1112. DOI:

http://dx.doi.org/10.1145/2556288.2557037

15. Albert Ng, Julian Lepinski, Daniel Wigdor, Steven

Sanders, and Paul Dietz. 2012. Designing for Low-

latency Direct-touch Input. In Proceedings of the 25th

Annual ACM Symposium on User Interface Software

and Technology (UIST ’12). ACM, New York, NY,

USA, 453–464. DOI:

http://dx.doi.org/10.1145/2380116.2380174

16. Ohmite Manufacturing Company. 2011. R2V-CT6-38E

Heatsink. Retrieved January 8, 2016 from

http://www.ohmite.com/cat/sink_r2.pdf.

Touch Interaction #chi4good, CHI 2016, San Jose, CA, USA

2867

http://dl.acm.org/citation.cfm?id=%202619648.2619677
http://dx.doi.org/10.1145/2512349.2512796
http://dx.doi.org/10.1145/2807442.2807454
http://dx.doi.org/10.1145/2702123.2702300
http://dx.doi.org/10.1145/2470654.2481317
http://dx.doi.org/10.1145/1891903.1891907
http://dx.doi.org/10.1145/769953.769976
http://dx.doi.org/10.1145/2642918.2647353
http://dx.doi.org/10.1145/120782.120784
http://dx.doi.org/10.1145/1476589.1476628
http://dx.doi.org/10.1145/2556288.2557037
http://dx.doi.org/10.1145/2380116.2380174
http://www.ohmite.com/cat/sink_r2.pdf

17. Omron Corporation. 2014. G6J-2P-Y Ultra-Small and

Slim DPDT Relay. Retrieved January 8, 2016 from

http://www.omron.com/ecb/products/pdf/en-g6j_y.pdf.

18. OptoFidelity LLC. 2015. OptoFidelity WatchDog.

Retrieved January 8, 2016 from

http://www.optofidelity.com.

19. Andriy Pavlovych and Wolfgang Stuerzlinger. 2009.

The Tradeoff Between Spatial Jitter and Latency in

Pointing Tasks. In Proceedings of the 1st ACM SIGCHI

Symposium on Engineering Interactive Computing

Systems (EICS ’09). ACM, New York, NY, USA, 187–

196. DOI: http://dx.doi.org/10.1145/1570433.1570469

20. Vishay Semiconductors. 2014. BPW46 Silicon PIN

Photodiode. Retrieved January 8, 2016 from

http://www.vishay.com/docs/81524/bpw46.pdf.

21. Anthony Steed. 2008. A Simple Method for Estimating

the Latency of Interactive, Real-time Graphics

Simulations. In Proceedings of the 2008 ACM

Symposium on Virtual Reality Software and Technology

(VRST ’08). ACM, New York, NY, USA, 123–129.

DOI: http://dx.doi.org/10.1145/1450579.1450606

22. Colin Swindells, John C. Dill, and Kellogg S. Booth.
2000. System Lag Tests for Augmented and Virtual
Environments. In Proceedings of the 13th Annual ACM
Symposium on User Interface Software and Technology
(UIST ’00). ACM, New York, NY, USA, 161–170.

DOI: http://dx.doi.org/10.1145/354401.354444

23. William Thomson 1st Baron Kelvin. 1891. Electrical
Units of Measurement. In Popular Lectures and
Addresses Vol 1: Constitution of Matter. MacMillan

and Co, London, UK, 80–81.

24. Colin Ware and Ravin Balakrishnan. 1994. Reaching
for Objects in VR Displays: Lag and Frame Rate. ACM
Transactions on Computer-Human Interaction
(TOCHI) 1, 4 (Dec. 1994), 331–356. DOI:

http://dx.doi.org/10.1145/198425.198426

25. Neng-Hao Yu, Li-Wei Chan, Seng Yong Lau, Sung-
Sheng Tsai, I-Chun Hsiao, Dian-Je Tsai, Fang-I Hsiao,
Lung-Pan Cheng, Mike Chen, Polly Huang, and Yi-Ping
Hung. 2011. TUIC: Enabling Tangible Interaction on
Capacitive Multi-touch Displays. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI ’11). ACM, New York, NY, USA, 2995–

3004. DOI: http://dx.doi.org/10.1145/1978942.1979386

Touch Interaction #chi4good, CHI 2016, San Jose, CA, USA

2868

http://www.omron.com/ecb/products/pdf/en-g6j_y.pdf
http://www.optofidelity.com/
http://dx.doi.org/10.1145/1570433.1570469
http://www.vishay.com/docs/81524/bpw46.pdf
http://dx.doi.org/10.1145/1450579.1450606
http://dx.doi.org/10.1145/354401.354444
http://dx.doi.org/10.1145/198425.198426

