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ABSTRACT 

We report on the Latency Hammer, a low-cost yet high-

accuracy and high-precision automated tool that measures 

the interface latency of touchscreen devices. The Hammer 

directly measures latency by triggering a capacitive touch 

event on a device using an electrically actuated touch 

simulator, and a photo sensor to monitor the screen for a 

visual response. This allows us to measure the full end-to-

end latency of a touchscreen system exactly as it would be 

experienced by a user. The Hammer does not require human 

interaction to perform a measurement, enabling the 

acquisition of large datasets. We present the operating 

principles of the Hammer, and discuss its design and 

construction; full design documents are available online. We 

also present a series of tools and equipment that were built to 

assess and validate the performance of the Hammer, and 

demonstrate that it provides reliable latency measurements. 
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INTRODUCTION 

 I often say that when you can measure what you are 

speaking about and express it in numbers you know 

something about it; but when you cannot measure it, when 

you cannot express it in numbers, your knowledge is of a 

meagre and unsatisfactory kind… 

− William Thomson, 1st Baron Kelvin [23] 

The impact of a computing system’s interface latency, the 

time between a user’s action and the system’s response, is a 

central question in the development of interactive computing 

systems and has been studied since at least the 1960s [2, 8, 

9, 13, 15]. Some degree of latency is an inherent part of any 

system, since a variety of tasks must be performed in order 

to process a user’s action: the state of the input device(s) 

must be sampled, computations performed, graphics 

generated, and displays updated. Ideally, the latency would 

be kept below the threshold that can be detected by the 

human visual system, which would render the interface 

indistinguishable from a truly latency-free system. Existing 

commercial touchscreen devices have latencies that range 

between 50 and 200 ms [15], and numerous researchers have 

demonstrated that this latency is quite noticeable [2, 7, 8, 10, 

15]; indeed, some research has suggested that humans can 

perceive touchscreen latency as low as 2 ms [15]. There are 

also performance improvements for dragging tasks on 

touchscreens if latency is reduced below 25 ms [8].  

Clearly, latency reduction is a desirable goal and is the focus 

of much work in both academic and industrial settings. A 

critical part of any effort to reduce latency is the ability to 

measure it, since without measurement we cannot assess the 

results of our efforts [23].  

While many systems exist to measure latency [4, 6, 15, 21], 

they tend to suffer from one or more of the following issues: 

they approximate the latency measure or are imprecise; they 

are cumbersome and require expensive hardware (e.g., high-

speed cameras, robotic arms); or they require human 

interaction making the measurements subject to human 

imprecision. While these limitations may have been 

acceptable for measuring latencies on the order of 100 ms, 

more recent work has demonstrated technologies which are 

capable of reducing latency far below these values [11, 15]. 

Thus, we argue that there is the need for inexpensive test 

equipment that can directly and empirically measure the 

interface latency of a touchscreen device without those 

issues. We set out to build such a system, which we call the 

Latency Hammer. Our prototype is shown in Figure 1. The 

design is open source; full design documents are available at 

http://www.tactuallabs.com/latencyhammer/. 

 

Figure 1. The Hammer prototype is composed of a 

microcontroller (1) and a measurement head (2) that rests 

on the device under test (3). The measurement head 

contains a photodiode (4) to measure display brightness 

and a brass contact (5) to trigger touch events. 
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The Hammer is designed to meet the following goals:  

Precision & Accuracy: Given the lower bounds of human 
latency perception, a measuring tool should be accurate and 
repeatable to within 1 ms. 

Range: Some commercially available systems have latencies 
well over 100 ms, while some research-based systems have 
latencies of less than 1 ms. A measuring tool should be able 
to report a wide range of latencies. 

Cost: The required equipment and infrastructure should be 
inexpensive, ideally costing less than $100 USD. 

Flexibility: The tool should be able to measure any 
capacitive touchscreen device, regardless of size or platform. 

Invasiveness: The tool should be able to measure devices 
whether or not the tester has the ability to change or 
instrument the operating system, or even the ability to install 
application software on the device.  

Automatic Operation: The tool should be capable of taking 
measurements without any human involvement after the 
initial setup and should be able to take a large number of 
unattended measurements within a short timespan in order to 
generate statistically significant results.  

In this paper we report on the design and verification of the 
Latency Hammer, and how it meets our goals. We first report 
on previous work that has looked at understanding and 
measuring latency. We then introduce the theory of operation 
that is the basis for our current prototype. This is followed by 
a detailed discussion of the implementation, as well as the 
multiple validation procedures we undertook to verify that 
the Hammer was accurate down to the millisecond, including 
the design and construction of testing equipment for the 
Hammer itself. Finally we report on the usage of the Hammer 
in real-world scenarios and the complexities involved with 
measuring latency in commercial devices.  

RELATED WORK 

We focus our review of related work on two areas. First, we 
examine studies of human perception of and performance 
under latency on direct-touch systems, which demonstrate 
the value of reducing latency. Second, we examine past 
efforts to measure end-to-end latency.  

Perception of Latency for Touch Input 

Latency for interactive systems has recently been the subject 
of significant research [2, 7, 8, 15]. The overall findings 
indicate that user interaction is affected by latency at levels 
well under the ~50 ms observed in today’s fastest 
devices [15]. Previous work has shown that it is harder for a 
user to detect the latency of a system’s response to indirect 
input than the latency in response to direct-touch input [7]. 
This is not unexpected, since, as Deber et al. observe [7], the 
user’s finger acts as a visual referent for when and where the 
system’s output should appear with zero latency, offering a 
clear basis for comparison. Our work focus on direct-touch.  

Kaaresoja et al. studied the visual perception of a physical 
button activation [9]. They found that the lower threshold of 
perception when pressing a physical button is 85 ms, and that 
latencies above 100 ms significantly affect the perceived 
quality of the interaction. 

Recent advances in ultra-low latency direct-touch devices—
with latencies of less than 1 ms—have enabled a series of 
studies that have explored the limits of latency perception [7, 
8, 15]. Ng et al. studied the lower limit of perception for 
touchscreen dragging and found that users could distinguish 
as little as 6 ms of latency when comparing against a 1 ms 
referent [15].  Jota et al.  studied the perception of tapping 
actions on touchscreens, complementing Ng et al.’s previous 
contribution [8]. They found that users are unable to discern 
latencies below 24 ms. Deber et al. studied direct and 
indirect input, and showed that small improvements in 
latency from a starting baseline are still perceived by users 
across most baseline latencies [7]. Latency reductions as low 
as 8.3 ms were noticeable when dragging on a touchscreen. 

Latency perception has also been studied for direct input 
with a stylus [2, 13]. Ng et al. report that 2 ms is discernible 
for dragging tasks and that 6 ms is noticeable for scribbling 
tasks [13]. In a follow up study, Annett et al. introduced the 
complex tasks of writing and drawing [2]. They found a 
higher perceivable value of 50 ms, but argued that the 
complexity of the task affects perception. 

These previous works strongly suggest that latency of 
systems should be lower than the current commercial values 
of 50–200 ms, driving our design requirement that the 
Hammer be capable of measuring latencies as low as 1 ms. 

Measuring Latency and Triggering Touch 

Other researchers have developed touch simulators for 
capacitive screens, although they have not been used to 
measure latency. For example, Yu et al.’s TUIC-f tangible 
tags had capacitive contacts that could be switched on and 
off; individual tags were identified by switching them at 
distinct frequencies [25]. 

Many early approaches to measuring interface latency used 
external cameras to calculate the time difference between an 
input and the corresponding visual response. Steed [21] 
mounted a tracker on a pendulum and used this as an input 
device that followed a known sine curve generated by the 
pendulum’s motion. Using an external camera he captured 
the pendulum’s movement and corresponding device output, 
converted each movement to sine curves, and compared the 
phase difference to calculate the latency. However, this 
approach cannot be directly applied to direct-touch devices.  

Casiez et al. demonstrated how a standard optical mouse 
could be used to measure latency in a mouse-based UI [5]. 
The mouse was placed on top of the screen, which displayed 
a moving pattern. This motion fooled the mouse’s optical 
sensor into thinking that the mouse had physically moved, 
and allowed a latency calculation based on the interval 
between the change in the pattern and the cursor movement. 
While effective for mouse-based systems, this technique is 
not suitable for a touchscreen-based device.  

Other approaches have measured physical distances during 
dragging operations. Ng et al. [15] used a high-speed camera 
to capture finger motion when dragging. The drag was 
performed at a constant speed on a known path and used a 
physical ruler to constrain the movement and aid the distance 
calculations. The physical distance between the finger and 
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the response was used to calculate the latency. Some 
commercial systems use extremely precise industrial robots 
coupled with high-end high-speed cameras [18], but these 
systems are prohibitively expensive for most users. 

Bérard and Blanch proposed two methods of measuring 
latency [4]. The first, a high precision method, uses a camera 
to track a finger’s position with an added marker, and carefully 
synchronizes those images with the trajectory of the finger as 
recorded by the touchscreen. This approach is able to calculate 
the system’s latency with a precision of 2 ms. The second 
approach is less precise but does not require external 
hardware. An on-screen target is moved in a circular path and 
the user is asked to follow it with their finger. Since the finger 
position should correspond to the currently displayed position 
of the target, the distance between the target’s expected and 
actual on-screen positions can be used to calculate the latency. 
While useful, both of these techniques require intense human 
interaction, with the second method being particularly prone 
to operator errors, making it only precise to 4 ms.  

Cattan and Bérard [6] built on Bérard and Blanch’s second 
method by using latency prediction to simplify the task of 
aligning the finger with the target. A predictive algorithm is 
fine tuned to the system’s visual response in order to reduce 
the apparent latency of the response to a finger. Once the 
results are satisfactory, the system latency can be obtained by 
looking at how the predictive algorithm was parameterized.  

Liang et al. [12] demonstrated a latency estimator for a head 
mounted display based on a camera recording the system’s 
graphical feedback. The input device (a Polhemus Isotrak) is 
attached to a pendulum with a known motion, and latency is 
computed from the estimated spatial gap and pendulum speed. 
Others have demonstrated equivalent solutions using other 
motions. Ware and Balakrishnan [24] adopted a similar 
approach but used a stepper motor to generate linear motion 
instead of a pendulum. Swindell et al. [22] utilized a turntable 
to move the input device in a circular motion. Pavlovych et al. 
[18] were able to measure latency with an unconstrained 
trajectory. They use a camera to record a mouse movement 
and the corresponding cursor movement, and compare the two 
video feeds to obtain the time between a mouse reaching a 
target and the corresponding cursor reaching the same 
location. While reporting results, the authors indicated that the 
measurements are affected by the inaccuracy of the apparatus 
(e.g., video-based motion tracking). 

While these methods provide latency measures, they require 
human motion for each measurement and can thus introduce a 
source of error. We believe that tools that enable fast and 
efficient unattended batch collection of latency measurements 
are crucial to further our attempts to reduce latency. 

THEORY OF OPERATION 

The goal of the Latency Hammer is to provide a reliable 
apparatus to accurately measure the end-to-end interface 
latency associated with tapping on a touchscreen. This means 
measuring the time from touch activation to the display of 
the corresponding visual response. This interval includes both 
software and hardware components: the capacitive sensor 
detects the touch; the touch information is captured by the 

hardware and processed by the OS; a message is passed to the 
active application; the application updates its internal state 
and draws new information to a display buffer; the display 
buffer is passed to the operating system; the operating system 
asks the display to render the display buffer; the display 
updates its pixels, and is able to finally show the user the 
feedback for the touch activation. Within this flow, each step 
contributes to the final end-to-end latency.  

However, latency is not constant, and some variability is to 
be expected. While the input sensor and the display are 
scanned and updated cyclically (typically between 60 and 
120 Hz, with constant data transfer costs), the touch sensing 
is not always synchronized with the finger landing on the 
surface. In addition, the system load is not always consistent, 
and the display is not always ready to render when a buffer 
swap is requested. Moreover, latency is strongly connected 
to the display refresh rate. On a 60 Hz display, new frames 
are drawn every 16.7 ms. Minor improvements in latency 
may be absorbed by the refresh rate, and large increases in 
latency may suddenly occur if a small additional delay forces 
the graphical update to wait for the next display frame. 

Although it is tempting to attempt latency measurements 
based on timestamp information internal to a device, both 
software and hardware factors affecting performance mean 
that the most accurate measurement of latency can only be 
taken by 1) optically observing the screen’s response to a 
physical input, and 2) running a series of trials to cope with 
measurement variations, as described above. We therefore 
focused our efforts on developing a device that could measure 
end-to-end latency—from activation to observable visual 
response—and that could automate multiple measurement 
cycles, reducing human intervention to its bare minimum (i.e., 
initial setup for the measurement session).  

The underlying concept of the Latency Hammer is 
straightforward: the Hammer is placed on top of a 
touchscreen device running an application that responds to a 
touch event by causing a significant change in brightness. 
Prior to each measurement session, the Hammer measures the 
light levels associated with the bright “on” and dark “off” 
states of the screen and calibrates brightness thresholds for 
each state. A host computer controls the Hammer, and an 
operator can initiate multiple runs of unattended 
measurements. The latency measurements are automatically 
clustered and analyzed; the results are provided to the 
operator in both graphical and textual formats.  

When a measurement cycle is initiated, the Hammer records 
a timestamp and then uses a touch simulator to trigger the 
capacitive screen and generate a touch event. This is entirely 
automated and does not involve a human, although from the 
touchscreen’s point of view the simulated touch is 
indistinguishable from a human tapping the screen. After 
initiating the touch, the Hammer uses a photo sensor to watch 
for the change in screen brightness caused by the response to 
the touch. Once a change is observed, the Hammer records a 
second timestamp. The elapsed time between the timestamps 
constitutes a single latency measurement. The automated 
nature of the Hammer means that hundreds of measurements 
can easily be collected when evaluating a device. 
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To maximize changes in brightness, ideally we make use of 
one of our custom Hammer applications; these have a black 
screen and then draw a white region in response to a touch 
event. However, it is possible to use any change in UI 
brightness (e.g., a button activation highlight) at the cost of 
some sensitivity. This allows us to use the Hammer to 
measure the latency of commercial applications and on 
devices that do not permit third-party code. 

The version of the Latency Hammer described in this paper 
has no moving parts in the touch simulator. Although this 
presented some design challenges, detailed in the following 
section, solving these issues allowed us to reproducibly and 
precisely trigger touch events without human intervention. 
Removing the human element from the measurement process 
enabled us to automate it; we believe that this is a significant 
contribution of the Hammer prototype. 

Figure 2 presents a diagram of the main components of the 
Hammer. The measurement head contains the touch actuator 
(a brass contact approximately the size of a human fingertip) 
and brightness sensor (a photodiode). When positioned on top 
of a capacitive touchscreen, the brass contact is designed so 
that it will not trigger a touch by itself. However, if it is 
electrically connected to an electron sink that provides 
additional mass and surface area, it will trigger a touch event. 
An electronically actuated normally open (NO) switch 
controls this connection. When the switch is closed, the brass 
contact is connected to the electron sink, disturbing the 
capacitive levels on the touchscreen and triggering a touch.  

HARDWARE IMPLEMENTATION 

Implementing the Hammer requires us to provide solutions 

for every step defined in the previous section: generating a 

touch event, capturing feedback from the display, and 

accurately calculating the time between the two events. 

Moreover, there are some practical considerations (e.g., 

securing the Hammer to the device) that influence the design. 

In this section, we describe the implementation of our 

prototype. We begin with a discussion of the measurement 

head (responsible for generating touches and sensing the 

screen’s response) and close with a discussion of the main 

board, which houses the microcontroller. Detailed 

construction details are provided online. 

Measurement Head 

The measurement head is a custom 3D printed roughly 

cylindrical enclosure that includes the circuitry to generate 

the simulated touch and deliver it to the screen through a 

brass contact, as well as a photodiode to sense feedback (see 

Figure 1, right). The brass contact and photodiode protrude 

through a hole in the bottom of the head, and rest on the 

screen during testing. The remainder of the bottom surface is 

covered in a layer of EPDM rubber to allow the head to grip 

the screen. A small circuit board is mounted inside the head 

and contains the switch (and supporting circuitry) that 

generates the touch; this switch is discussed in detail in the 

following section.   The top of the head is covered in Velcro 

hook-and-loop fastener which enables repositionable 

weights that help the measurement head sit flat on the screen. 

We now detail the two main functions of the measurement 

head: generating touch and sensing feedback. 

Generating Touch 

One of the goals of the Hammer was to reduce the possibility 

of human-induced errors during the measurement. To 

effectively remove the human from the measurement loop 

the Hammer must create a simulated touch that is 

indistinguishable from an actual human touch. In order to do 

this it generates a change in the screen capacitance that the 

sensor identifies as a touch, and it is able to programmatically 

trigger and reverse this change. 

Generating changes in capacitance: To generate these 

changes in capacitance, we use a brass contact connected to an 

electron sink. Brass was selected because it is highly 

conductive, corrosion resistant, and relatively soft (as metals 

go) reducing the likelihood of screen damage due to scratches; 

it is also relatively lightweight which reduces the likelihood of 

screen damage due to impacts. The contact is 12 mm in 

diameter (similar to a fingertip) and 2 mm tall. The design 

parameters for the contact are quite flexible but care must be 

taken to minimize the surface area so the contact does not 

trigger a touch event on its own. The inside of the brass contact 

(i.e., the side that is facing into the measurement head 

enclosure) was coated in liquid rubber insulation. 

The brass contact is connected to an electron sink in order to 

dissipate additional charge. It is actually quite easy to 

dissipate sufficient charge, and in most cases the greater 

challenge is preventing an unintentional dissipation. As an 

example, connecting the brass contact to one end of a 30 cm 

22 AWG wire with alligator clips (leaving the other end of 

the wire disconnected) was enough to induce a touch event. 

The current prototype repurposes a small bare aluminum heat 

sink (Ohmite R2V-CT6-38E [16]), since the characteristics 

of a heat sink (conductive material arranged to maximize its 

surface area) overlap completely with the design 

requirements of an electron sink. By connecting the contact 

to the electron sink, we could reliably trigger a touch. We 

next needed a way to programmatically enable and disable 

that connection. 

 

Figure 2. Block diagram of the Latency Hammer. The main 

board triggers a touch by closing the switch (1) to generate a 

capacitive disturbance on the screen. The visual response is 

monitored by the photodiode (2) connected to the microcontroller.  

The computed latency is then output to the host computer. 
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Triggering touch programmatically: The choice of the 
electrically actuated switch is a critical part of the Hammer’s 
design because a very small change in capacitance (on the 
order of 1 pF) is needed to register a touch event on a 
capacitance sensor and most switches leak too much current 
when open. This leakage would result in a touch event as 
soon as the Hammer came in contact with the screen, 
regardless of the switch position. During the development 
process numerous alternatives were examined and tested, 
including solid-state analog switches, tri-state devices, 
transistors, solid-state relays, and mechanical relays. We saw 
the most consistent performance with an Omron G6J-2P-Y, 
which is a highly insulated mechanical relay [16]. This relay, 
along with careful hardware design, was able to completely 
eliminate erroneous touch events. 

Despite its advantages, a reliance on a mechanical switch 
introduced new problems. Switching a mechanical relay 
involves energizing a coil to magnetically move a metal 
contact, and a movement in the macroscopic world takes far 
longer—on the order of several ms—than the sub-atomic 
equivalent in a solid-state switch. While we could safely 
ignore a few ns of solid-state switching time when taking ms-
scale latency measurements, we cannot ignore a ms-scale 
switching time. Fortunately, there was a straightforward way 
to measure the switching time in real-time during each 
latency measurement: we used a double pole relay with two 
switches controlled by a single coil. One pole was used to 
switch the touch simulator, and the other pole was fed into 
an input pin on our microcontroller. A change on that pin 
indicated the relay had closed, allowing us to subtract the 
relay’s switching time from the latency measurement. A 
related concern is the bounce associated with the closure of 
a mechanical switch. Physical contacts can vibrate, causing 
a short period of rapid oscillations when a switch closes. We 
measured the bounce with an oscilloscope, and over a dataset 
of 50 relay closings found an average bounce time of 0.118 
ms (SD=0.003), which could safely be ignored. 

Finally, when designing the circuitry to trigger touch, special 
attention was paid in order to minimize current leakage and 
stray capacitance, since they could trigger unintended touches. 
Because the relay is acting as a switch between the brass 
contact (which is always resting on the screen) and the 
electron sink, one half of the switch will always be connected 
to the brass contact, regardless of the switch position. In 
order to minimize the length of the connection, and therefore 
reduce leakage, the relay must be placed as close as possible 
to the brass contact in the measurement head, which 
necessitates a small circuit board inside the head.  

Sensing Feedback 

The Hammer must be able to identify feedback generated by 

the simulated touch in order to compute the device’s latency. 

Any screen response can be identified as a change in 

brightness, ideally as a transition from a black screen to a 

white one. We use a Vishay BPW46 PIN photodiode [20] to 

identify changes in brightness. This photodiode was selected 

because it has a fast and consistent response time, a flat-sided 

package that can sit flush against the screen, and good visible 

light sensitivity.  

The photodiode is mounted in the measurement head 

adjacent to the brass contact, which allows it to observe a 

response in close proximity to the touch event, and is 

connected to an ADC (analog to digital converter) in the 

microcontroller via a shielded cable to the main board.  

Because we run a raw analog signal over the cable, it is 

somewhat sensitive to noise. In the current design, we do not 

have any active circuitry adjacent to the photodiode in the 

measurement head, since the size of circuit that could be 

accommodated was limited. Placing a high-speed ADC in 

the measurement head would allow us to transmit a digital 

signal from the measurement head to the main board, and that 

signal would be more resilient to noise. However, the current 

approach is quite workable, and we have been able to 

mitigate most noise issues using both hardware (e.g., careful 

shielding) and software (e.g., detecting anomalous 

photodiode readings and rejecting any compromised trials). 

Main Board 

With the brass contact and photodiode in place, we now 

describe the core of the Hammer. The main board contains 

the microcontroller and supporting circuitry; it is responsible 

for triggering the switch to generate a touch, and then sensing 

the photodiode for changes in brightness. Once this is 

detected, the Hammer can calculate the time difference and 

output a latency measurement.  

The brain of the Hammer is an Arduino Due microcontroller 

board [3], which is based on an Atmel SAM3X8E ARM 

Cortex-M3 CPU running at 84 MHz. In addition to the digital 

I/O pins, we make use of one of the built-in 12-bit ADCs to 

read the photodiode light levels. The customized supporting 

circuitry for the Hammer is built on a protoshield, which 

provides 30 cm2 of perfboard in an Arduino-compatible form 

factor. The measurement head is connected to the main board 

via a pair of shielded Category 6 STP cables (i.e., Ethernet 

cable and connectors). The cables do not carry Ethernet 

signals; they are simply readily available shielded multi-

conductor cables with built-in connectors. Once the Hammer 

has a measurement, it is sent to the host computer, which 

aggregates and logs all the measurements. The software for 

the microcontroller, the host computer, and device-specific 

helper applications are described in the next section. 

HAMMER SOFTWARE 

There are several software components that are required to 
perform a latency measurement. The main responsibility of 
the software is to coordinate the events defined in the 
previous sections and to store that information in the host 
computer for later analysis. Software is divided in two main 
components: the firmware, and the host computer software. 
There is also software that runs on the device under test. We 
provide “white touch” applications for several platforms that 
draw a black screen and then respond to a touch event by 
drawing a white region, but any application which causes a 
brightness change at the point of a touch will suffice. 
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Firmware 

The firmware is responsible for the low-level actions 
involved in running a latency measurement and for 
transmitting the results back to the host computer. It can also 
run a series of precisely spaced measurements, which is used 
by the host software to create extended latency datasets; the 
data flow is described in the following section. Finally, the 
firmware is also responsible for maintaining a calibration of 
brightness levels of the “on” and “off” touch states. Written 
in the Arduino variant of C, the firmware interacts with the 
host computer via a USB-based serial console. The protocol 
is human-readable to facilitate easy debugging operations.  

Host Computer Software 

The host software is the front end of the Hammer. It is an 
interactive command line application written in Python that 
sends commands to the firmware, receives and analyses the 
results, and outputs data files and charts to the user. 

Dataflow 

A sample dataflow is as follows: The user places the 
Hammer on the screen of the device under test, and indicates 
the desired number of series to run, each of which consists of 
10 measurements. Extended testing could use 100 series (for 
a total of 1000 measurements), but a small number of series 
(e.g., 5) will generally yield a good overview of the device’s 
latency. The host software instructs the firmware to calibrate 
the “on” and “off” light levels and then begins running the 
first series of tests. Between each series, a randomized delay 
between 0–16.7 ms is communicated to the Hammer in order 
to distribute the measurements across the screen’s refresh 
cycle. When all series are complete, the user is alerted, and 
results are shown on-screen. During the capture of latency 
measurements, user interaction is only required if the Hammer 
has detected a malfunction (e.g., a human is required to push 
a power button to wake the device). 

Once all of the data is collected, the host software runs a k-
means clustering algorithm across all of the measurements 
from all of the series. This is done because we expect 
groupings based on the display refresh cycle. The output data 
typically cluster around multiples of the display refresh time. 
The raw and clustered data is then logged, and a visual 
representation of the observed latencies is displayed. A 
sample chart is shown in Figure 3. Raw data is also made 
available to the user for logging or further analysis.  

VALIDATION 

The development of any type of test equipment requires a 

careful and thorough validation process to ensure that the 

equipment is, in fact, measuring reality. In many cases it is 

possible to verify new test equipment against an existing 

gold standard or test regime, providing a chain of 

metrological traceability. However, there is no standard or 

regime for latency measurement devices. We therefore 

contribute to the community by developing a series of tests 

and test equipment to provide confidence that the Hammer is 

correctly measuring latency. We hope to contribute towards 

a gold standard with our prototype and with our set of tests 

geared towards validating future measuring devices.  

Our first test measures relative latency. We intentionally add 

latency to a device, and check that the Hammer is able to 

detect it. The second test measures the overhead involved in 

a Hammer measurement by creating and measuring a zero-

latency device. The third test seeks to validate the absolute 

accuracy and repeatability by creating a simple oscillator-

based latency generator circuit and simultaneously 

measuring it with the Hammer and with an oscilloscope. The 

fourth and final test cross-validates the Hammer by building 

a camera-based apparatus and simultaneously measuring a 

real device with both the camera and the Hammer. 

Software Delay Test 

We created two variants of our “white touch” applications 

(running on iOS and Android) that added an arbitrary delay 

prior to drawing the white region in response to a touch. Each 

application added this delay with a different programmatic 

mechanism.  As our first measurement of the Hammer’s 

accuracy, we attempted to measure that added latency. This 

allowed us to verify the relative measurement performance 

of the Hammer (e.g., configurations A and B are 50 ms apart) 

independent of the Hammer’s absolute measurement 

performance (e.g., configuration A has 100 ms of latency).  

The first application introduces milliseconds of latency 

(using POSIX usleep). We then ran several series of latency 

measurements using different added latencies using an iPad 

mini running iOS 7.1.2. The second application delays the 

response by a certain number of display frames, rather than 

by a certain number of ms. This allowed us to take into 

account the device’s limitation in rendering to the display 

and measure latency in display frames. To add additional 

robustness to our verification, we opted to use Android for 

this test, and used Android’s Choreographer to schedule the 

screen update in the future. Tests were performed on a Nexus 

9 running Android 5.1.1. Table 1 shows the results for both 

iPad and Nexus 9 tests. 

Overhead Test 

The Hammer is only useful if it can measure absolute levels 

of latency. A key issue in calibrating these measurements is 

to understand the overhead of the measurement process. 

Several steps in the measurement process have small but 

finite durations (e.g., the time required for the ADC to read 

Figure 3. Graphical summary generated by the Hammer 

showing 100 measurements of a Nexus 9. The dataset contains 

10 series, each of which contains 10 measurements. Each row 

corresponds to one series. Measurements cluster into two 

groups, with means spaced one display frame (16.8 ms) apart, 

illustrating the variability of the device’s latency. 

Touch Interaction #chi4good, CHI 2016, San Jose, CA, USA

2862



 

 

the photodiode’s signal), and we must ensure that these steps 

do not introduce an uncorrected delay that would skew the 

latency measurements. To measure this overhead, we created 

a device configuration that mimicked a zero-latency device 

by simply displaying a white screen. This meant that the 

Hammer would detect a visual touch response as soon as it 

starts checking for one, and any reported non-zero latency 

would therefore entirely consist of measurement overhead. 

After 20 sample measurements, we found that the overhead 

was a consistent 0.006 ms (SD = 0 ms), which is several 

orders of magnitude smaller than the quantities that we are 

measuring, confirming that the Hammer overhead can be 

safely ignored in our latency calculations. 

Oscillator Test 

Having established the non-effect of overhead, we wished to 

measure the accuracy of absolute latency testing. Because 

commercial devices exhibit significant variability in their 

latencies between measurements they cannot be used as a 

ground truth. Instead, we constructed a simple oscillator-

based circuit to act as a gold-standard calibration target. It is 

based on a monostable configuration of a 555 timer and 

provides a controlled, repeatable delay: an input pulse is fed 

into the circuit, and it enables an output pin after a 

controllable time interval. That interval is set with a variable 

resistor, and in the current configuration it can be set between 

1 and 500 ms. The delay was verified using an oscilloscope.  

To test the Hammer, we connected the output of the oscillator 

to an LED with a ns-scale response time. We then connected 

the input of the oscillator to the signal from the Hammer that 

powers the relay.  The Hammer’s measurement head was 

placed so that it was sitting on top of the LED. No 

touchscreen device was used during these tests; instead, the 

LED played the role of the screen. When a Hammer 

measurement was run, the Hammer would power the relay to 

simulate a touch; the touch simulator would have no effect, 

since there was no touchscreen, but powering the relay would 

begin the oscillator’s delay. After the specified time interval, 

the oscillator would turn on the LED, and the Hammer would 

record a response from the “screen”. An oscilloscope was 

connected during each trial, and was used to measure the 

delay produced by circuit. We were then able to compare the 

latencies reported by the Hammer and by the oscilloscope. 

The results of our tests are shown in Figure 4, and 

demonstrate that the Hammer is repeatable within 0.4% 

across a range of latencies. 

Camera-Based External Validation test 

Though our Oscillator Test provided assurance of the 

absolute accuracy of our device, we wanted to perform an 

additional validation using a high-speed camera and an 

external method of triggering a touch. This orthogonal 

approach provided us with several benefits. First, it provided 

additional confidence that the Hammer was functioning as 

expected. Second, it provided a mechanism to cross-validate 

the Hammer’s sensor inputs and ensure they are functioning 

correctly. Finally, we wished to conduct tests similar to those 

that have been done previously in the literature, such as by 

Ng et al. [15], in order to provide additional confidence. 

The biggest challenge of camera-based validations of a 

tapping event is determining the moment of impact, which 

must be precisely measured in order to calculate latency. 

Most traditional capacitive styli have a solid internal tip 

(often made from brass) that is covered by a molded 

conductive rubber nub that is highly deformable. 

Unfortunately, this malleability means that the moment of 

screen contact can be somewhat ambiguous. When a stylus 

hits the screen, the initial point of impact will be the front 

edge of the rubber tip, which will begin to deform as the tip 

is compressed against the screen. The earliest stages of the 

impact may not trigger a touch event, and it can be difficult 

to visually determine the precise moment of impact. In order 

to remove this potential confound, we needed a stylus with a 

rigid tip. The tip must be conductive but still light and soft 

enough to avoid damaging the screen. 

 

Table 1. Software Delay validation results. Each row 

shows one test condition containing 200 measurements.  

We show data for the two largest clusters (Main and 

Secondary) which constitute almost all measurements. The 

right column shows the difference between the baseline 

and the Main cluster, which matches the expected value. 

Secondary clusters are one 60 Hz display frame slower. 

 

Figure 4. Oscillator validation results. Simultaneous 

measurements were taken with the Hammer and with an 

oscilloscope at a variety of latencies between 1 and 200 ms.   

All differences are below 0.4%, with most below 0.25%.        

Error bars show standard deviation.  
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A second complication with optical-based stylus 
measurements is that capacitive sensors can detect objects 
that are above the sensor, and not merely those that are in 
contact with it. Touch detection is based on thresholding a 
continuous signal that increases as an object gets closer to 
the sensor, and not on an inherently binary value. The 
thresholds are generally tuned so that the sensors detect input 
that is a few tenths of a mm above the surface. The problem 
with this detection height is that a device will receive a touch 
event when a stylus crosses the detection threshold, and not 
when it actually contacts with the screen itself. This means 
that a timing estimate based on the moment of contact may 
be slightly incorrect. Finally, because of the variance in 
latency on commodity devices, we need a way to measure 
the same touch event using both the Hammer and the high-
speed camera, since we cannot directly compare sequential 
readings. To overcome these complications we designed the 
Direct Optical Hammer to externally validate the Latency 
Hammer, illustrated in Figure 5. 

The Direct Optical Hammer is designed to produce a 
carefully controlled physical interaction with the screen, and 
allow that interaction to be easily timed using a consumer 
level high-speed but low-resolution camera. (We used a 
Nikon 1 J3, which can capture 1200 fps at a resolution of 
320x120.) It also allows that interaction to be measured 
simultaneously by the Latency Hammer. The device is 
equipped with a custom capacitive stylus and extra apparatus 
to precisely record the moment of touch.  

Custom Capacitive Stylus 

The heart of the apparatus is a custom-built capacitive stylus. 
The body of the stylus is an aluminum rod (10 mm diameter), 
and the tip is a circular disk of UHMW polyethylene 
conductive plastic (12 mm diameter by 6 mm tall, sized to 
provide a contact area similar to a finger). This slippery 
plastic is extremely light and firm (similar to a plastic kitchen 
cutting board), and does not appreciably deform when it 
contacts the screen. The rod is held in place by a linear 
bearing which constrains the motion of the rod to a single 
axis. The bearing is attached to a custom 3D-printed 
mounting assembly that ensures the rod is perpendicular to 
the screen. The rod is connected with ultra-flexible wire 
(which has no impact on the movement of the rod) to a small 
circuit board in the mounting frame, and then to an electron 
sink similar to one used in the Hammer. This hardware 
configuration yields a capacitive stylus with a non-
deformable tip that can be manually lifted a small distance 
off of a touchscreen, and then be precisely dropped onto the 
screen with no side-to-side movement.  

This hardware is useful for conducting controlled 
observations, but it is not enough to allow an easy analysis 
via low-resolution high-speed footage.  

Capturing Touch Time with a High-Speed Camera 

To aid the analysis process, we added several additional 
components to create an onset-of-touch mechanical switch 
that is closed at the same instant the stylus triggers a touch 
event. The switch is constructed in two halves. The first is a 

1 x 5 cm rigid cross piece added to the top of the rod (forming 
a “T”), with a brass contact plate on its bottom surface. The 
second half is a finely adjustable screw assembly mounted 
into the linear bearing parallel and immediately adjacent to 
the rod, with a brass plate on its top surface. The positioning 
of the screw and cross piece were arranged so that the contact 
plate on the cross piece will land on the contact on the screw. 
The screw acts as a stop that can prevent the stylus from 
travelling any further towards the screen, and the pair of 
brass plates will complete a circuit whenever the cross piece 
is resting on the screw. The utility of this apparatus stems 
from the choice of adjustment screw, which has extremely 
fine 100 TPI (threads per inch) threads. (As a comparison 
with a more common screw, the screw that connects a camera 
to a tripod is only 20 TPI.). The fine threads mean the height 
of the screw can be precisely controlled, since each full 
revolution of the screw changes its height by only 0.25 mm, 
and smaller adjustments can easily allow 0.01 mm changes.  

Calibration and Operation of the Direct Optical Hammer 

The Direct Optical Hammer must be calibrated so that the 
onset-of-touch switch triggers at the exact moment a touch is 
activated. First, the height of the screw is lowered so that it 
is below the level of the cross piece when the stylus is resting 
on the screen. Since the stylus is completely unimpeded by 
the screw, it will trigger a touch event, and will not close the 
onset-of-touch switch. We then raise the height of the screw 
until it comes into contact with the cross piece, which closes 
the switch but does not impact the touch event, since the 
stylus has not moved. We continue to raise the screw, which 
begins to lift the cross piece (and therefore the entire stylus) 
off of the screen. Eventually, the screw will lift the stylus far 
enough off the screen that it will cross the detection 
threshold, and a touch event will no longer be triggered. At 
this point we lower the screw until a touch event occurs. 
After a series of minute adjustments (which include lifting 
and dropping the stylus several times after each adjustment), 
we can calibrate the height of the screw so that the stylus will 
be stopped (and the onset-of-touch signal generated) at the 
exact height that triggers a touch event. We connect this 

 

Figure 5. The Direct Optical Hammer is built around a 

custom capacitive stylus (1). An onset-of-touch signal is 

created when the adjustable screw (2) makes contact with 

a cross piece (3), and illuminates the LED (4). The speed of 

the stylus drop is controlled by an upper stop (5) that 

ensures the stylus is always dropped from the same height. 
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signal to an LED with a ns-scale response time to provide an 
easily discernible visual signal on a low resolution video. 
Finally, we added an upper stop so that the stylus was always 
dropped from the same height to ensure the same downward 
velocity, and a spring to prevent the stylus from bouncing 
when it hits the screen. With this calibration complete, we 
can assemble the experimental setup shown in Figure 5.  

Validation 

A Nexus 9 tablet was placed under the Latency Hammer, and 

our high-speed camera was positioned so that it was pointing 

down at the tablet. The Direct Optical Hammer was placed 

on the tablet, and the LED positioned so that it was clearly 

visible in the camera image. The onset-of-touch signal was 

connected to the relay closure detection circuit in the Latency 

Hammer, and the power to the relay was disconnected. This 

meant that nothing would happen when the Hammer tried to 

activate the relay to simulate a touch, but the Hammer would 

nonetheless detect a signal putatively indicating that the relay 

had closed. In other words, from the Hammer’s point of 

view, a calibration trial was identical to a regular trial except 

that it took the “relay” several seconds to close (i.e., the time 

required to lift and drop the stylus), rather than the couple of 

ms that an actual relay would require. Since the Hammer 

automatically subtracts the relay closing time from its 

measured latency, we generated valid readings without 

requiring any hardware or software change, which enabled 

us to test the Hammer in a configuration that was as close to 

normal as possible. The Hammer measurement head was 

positioned so that it was aligned with the stylus, and an 

oscilloscope was connected to the onset-of-touch signal to 

determine if the stylus bounced when it hit the screen. 

Bounces were extremely small and not visible to the naked 

eye, but could occur due to the mechanical forces involved. 

A bounce-free impact results in a step function in the onset-

of-touch signal: it goes from low to high in a single 

transition. A bounce manifests itself as a series of low-high-

low-high transitions, which usually occurred over a period of 

a few ms. Because bounces would add an additional 

confounding variable (i.e., it would be unclear which impact 

the device responding to), trials that bounced were discarded. 

A trial consisted of the following steps. The Hammer was 

commanded to begin a reading; no relay activity (and 

therefore no simulated touch) would occur, since the relay’s 

power had been disconnected. The high-speed camera was 

started, and the stylus was then manually lifted to the upper 

stop and gently released, imparting as little vertical velocity 

as possible. At the moment that the touchscreen registered a 

stouch event from the falling stylus, the onset-of-touch signal 

illuminated the LED and told the Hammer that its relay had 

closed. The Hammer would begin monitoring its photodiode, 

and then report a latency. The high-speed footage was then 

analyzed manually, and the frame numbers corresponding to 

the LED illumination and screen response were recorded. 

We calculated the latency based on the high-speed footage 

and compared it to the latency reported by the Hammer. 

 

Results 
The optical latency measurements have an uncertainty 
corresponding to two camera frames (1.66 ms) due to 
resolution and frame rate limitations. Like most screens, the 
LCD in the Nexus 9 refreshes from top to bottom. When 
viewed at 1200 fps, this refresh is clearly visible, and the 
screen’s transition from black to white as it redraws in 
response to the touch event progresses at approximately 
8 mm per camera frame. Low resolution footage of this 
redraw progression makes it somewhat ambiguous as to the 
exact moment when the photodiode will be sufficiently 
illuminated to generate a “screen is on” signal, although it is 
clear that it happens within the two frame window. 

We conducted a series of 20 combined samples with a 
Nexus 9 under normal conditions (i.e., radio on, random 
background applications running on the device.) The latency 
measured by each apparatus varied from 75 to 200 ms across 
the 20 samples. The average difference for a given sample 
between the optical and Hammer latency measurements was 
0.88% (SD = 0.39%). Due to the footage uncertainties 
discussed above, we also report the difference for the frame 
where the display has redrawn beyond the photodiode (i.e., 
the worst case scenario); this resulted in an average 
difference of 1.6% (SD = 0.59%).  

These validation techniques all demonstrate the accuracy and 
reliability of the Hammer. However, measuring the latency 
of real-world commodity devices can be complex, and we 
now report on some of these challenges. 

MEASURING LATENCY IN THE REAL-WORLD 

During the development of our latency measurement tools 
and the analysis of many different devices, we have found 
that latency can be a remarkably fuzzy concept. In general, 
when dealing with a commodity device running a standard 
operating system, it does not make sense to speak of “the 
latency” of the device. Instead, we routinely see the same 
device exhibiting a wide range of latencies, sometimes 
varying by as many as 3 frames (50 ms) between sequential 
samples, as exemplified in Figure 6. This phenomenon may 
not occur on specialized devices such as the demonstrator 
systems described previously in the literature [11, 15], but it 
is evident and widespread on commercially-available 
devices.  

 

Figure 6. Raw results of 600 latency measurements on a 

Nexus 5 running Android 5.1.1. The devices exhibits a 

latency profile that changes over time.  
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These variations in performance are not surprising, given the 
complex nature of the systems in question. Some of the 
factors that we have observed impacting performance are: 

Heat. On many systems, as their internal temperature 
increases, the OS may choose to disable or throttle one or 
more CPU cores to reduce the thermal load. This effect is 
more pronounced on small devices (e.g., phones or tablets), 
since they often lack fans or other active thermal management 
technologies and thus have fewer options to cool themselves. 
We observed the effect of thermal throttling during longer 
measurement runs on some devices. For example, on the 
dataset from a Nexus 5 phone shown in Figure 6, we found 
that our initial sets of measurements were split between 
clusters at 69.1 and 85.2 ms. However, after approximately 
300 measurements, an additional frame of latency would 
suddenly appear, and we would record latency clusters at 
100.6 and 117.4 ms. Allowing the phone to cool off (or briefly 
placing it in a freezer) would restore the faster performance. 

System Load. As we would expect, a busy OS handling a 
large number of processes will perform worse than a system 
that is idle. Reducing the number of background tasks (e.g., 
quitting other apps, disabling radios via Airplane mode, etc.) 
would often improve device latency.  

Battery State. Similar to heat, throttling may occur if the 
device’s battery level is low, and the OS switches off or 
throttles CPU cores in an attempt to save power. 

Vertical Screen Refresh. As discussed above in the section 
on the Direct Optical Hammer, most screens redraw from top 
to bottom. This redraw time is small, but can be on the order 
of ms. For example, we observed that a Nexus 9 could take 
upwards of 10 ms to redraw its screen. This means that the 
location of the measurement head can have an impact, since 
the same redraw operation will appear to take less time if the 
screen response is measured at the top rather than the bottom 
of the screen. The position of the measurement head must 
therefore be standardized (e.g., at the center of the screen). In 
this paper, all measurements were obtained from the center of 
the screen, a position we assume is centered in the redraw step. 

Some of these issues do not have clear answers, since it 
depends on the purpose of the latency measurement. In other 
words, when we measure the latency of a device, are we 
interested in best possible performance that the hardware can 
exhibit (e.g., a cold, idle phone in Airplane mode), or the 
worst performance that a user is likely to encounter in the 
wild (e.g., a hot phone with a low battery, running many 
background tasks while connected to a busy Wi-Fi network)? 
The answer will depend on the context of the measurements. 
In either case, it is important to think of latency as a range of 
possible values, rather than a single number. However, all of 
these variables can be quantified, and can often be obtained 
programmatically by the measurement applications (e.g., 
querying the OS to determine the current power saving 
mode), thus adding context to the obtained measurements. 
Furthermore, the automation facilitated by the Hammer 
allows us to consider latency within the context of the 
complexity of real-world devices in real-world conditions, 
which has not been possible with previous latency 
measurement devices explored by the community. 

Sample Data 

We now present some latency measurements for recent 
commercial devices, which are shown in Table 2. As in Table 
1, we present the two largest clusters of measurements. 500 
measurements were taken for each device. As we have 
discussed, many factors can impact the latency of a device. 
While we have attempted to control for many of these (e.g., 
low temperature, low load, full battery), others, such as 
differences in software, are beyond our control. As such, it is 
important to understand that this data, while accurate and 
representative, does not lend itself to cross-device 
comparisons. Just as fuel efficiency standards provide 
multiple ratings (“city” and “highway”), there is a clear need 
to develop a framework for the conditions under which 
latencies are measured with a device such as the Hammer. 
This is an important area of future work. 

FUTURE WORK AND CONCLUSION 

We have presented the Latency Hammer, a tool that 
empirically measures the interface latency of touchscreen 
devices. The Hammer is low-cost and capable of measuring 
latency with little or no human involvement. We also provide 
software tools that automatically analyze the resulting data. 

We have also presented a series of hardware and software 
tools used to evaluate the Hammer, and demonstrated that 
the Hammer is repeatable to within 0.4% between successive 
measurements of a simplified oscillator circuit and that its 
measurements are within 0.8%–1.6% of measurements taken 
with a high-speed camera. These validation tools can be used 
to benchmark other latency measurement equipment. 

We intend to continue development of the Latency Hammer 
system and to further improve the robustness of the design 
(e.g., moving the ADC into the measurement head to reduce 
noise). We are keenly interested in adapting the Hammer 
(including some of the approaches used in the Direct Optical 
Hammer) to test dragging performance, the impact of 
multitouch, and to test non-capacitive sensors (e.g., EMR 
pens, or optical sensors). Finally, we intend to continue the 
development of our benchmarking tools and validation 
techniques in order to provide further confidence in the 
robustness of our systems and to provide a standard set of 
benchmarks for others. 

The Hammer is a powerful tool that can be used by system 
builders at both the hardware and software level. We hope that 
the low-cost and availability of such a measurement tool will 
speed and simplify system development and improvement. 
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Table 2. Results of 500 measurements for several 

commercial devices. The two largest clusters are reported. 
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